Archive for discussion paper

statistical aspects of climate change [discuss]

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , on August 4, 2022 by xi'an


As part of its annual conference in Aberdeen, Scotland, the RSS is organising a discussion meeting on two papers presented on Wednesday 14 September 2022, 5.00PM – 7.00PM (GMT+1), with free on-line registration.

Two papers will be presented:

‘Assessing present and future risk of water damage using building attributes, meteorology, and topography’ by Heinrich-Mertsching et al.​
‘The importance of context in extreme value analysis with application to extreme temperatures in the USA and Greenland’ by Clarkson et al.​

“The Discussion Meeting at this year’s RSS conference in Aberdeen will feature two papers on the Statistical Aspects of Climate Change. The Discussion Meetings Committee chose this topic area motivated by the UN Climate Change Conference (COP26) held in Glasgow last year and because climate changes and the environment is one of the RSS’s six current campaigning priorities for 2022.

You are welcome to listen to the speakers and join in the discussion of the papers which follows the presentations. All the proceedings will be published in a forthcoming issue of Journal of the Royal Statistical Society, Series C (Applied Statistics) .”

Dr Shirley Coleman, Chair and Honorary Officer for Discussion Meetings

multilevel linear models, Gibbs samplers, and multigrid decompositions

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on October 22, 2021 by xi'an

A paper by Giacommo Zanella (formerly Warwick) and Gareth Roberts (Warwick) is about to appear in Bayesian Analysis and (still) open for discussion. It examines in great details the convergence properties of several Gibbs versions of the same hierarchical posterior for an ANOVA type linear model. Although this may sound like an old-timer opinion, I find it good to have Gibbs sampling back on track! And to have further attention to diagnose convergence! Also, even after all these years (!), it is always a surprise  for me to (re-)realise that different versions of Gibbs samplings may hugely differ in convergence properties.

At first, intuitively, I thought the options (1,0) (c) and (0,1) (d) should be similarly performing. But one is “more” hierarchical than the other. While the results exhibiting a theoretical ordering of these choices are impressive, I would suggest pursuing an random exploration of the various parameterisations in order to handle cases where an analytical ordering proves impossible. It would most likely produce a superior performance, as hinted at by Figure 4. (This alternative happens to be briefly mentioned in the Conclusion section.) The notion of choosing the optimal parameterisation at each step is indeed somewhat unrealistic in that the optimality zones exhibited in Figure 4 are unknown in a more general model than the Gaussian ANOVA model. Especially with a high number of parameters, parameterisations, and recombinations in the model (Section 7).

An idle question is about the extension to a more general hierarchical model where recentring is not feasible because of the non-linear nature of the parameters. Even though Gaussianity may not be such a restriction in that other exponential (if artificial) families keeping the ANOVA structure should work as well.

Theorem 1 is quite impressive and wide ranging. It also reminded (old) me of the interleaving properties and data augmentation versions of the early-day Gibbs. More to the point and to the current era, it offers more possibilities for coupling, parallelism, and increasing convergence. And for fighting dimension curses.

“in this context, imposing identifiability always improves the convergence properties of the Gibbs Sampler”

Another idle thought of mine is to wonder whether or not there is a limited number of reparameterisations. I think that by creating unidentifiable decompositions of (some) parameters, eg, μ=μ¹+μ²+.., one can unrestrictedly multiply the number of parameterisations. Instead of imposing hard identifiability constraints as in Section 4.2, my intuition was that this de-identification would increase the mixing behaviour but this somewhat clashes with the above (rigorous) statement from the authors. So I am proven wrong there!

Unless I missed something, I also wonder at different possible implementations of HMC depending on different parameterisations and whether or not the impact of parameterisation has been studied for HMC. (Which may be linked with Remark 2?)

deduplication and population size estimation [discussion]

Posted in Books, Statistics with tags , , , , , , on April 23, 2020 by xi'an

[Here is my discussion on the paper “A Unified Framework for De-Duplication and Population Size Estimation” by [my friends] Andrea Tancredi, Rebecca Steorts, and Brunero Liseo, to appear on the June 2020 issue of Bayesian Analysis. The deadline is 24 April. Discussions are to be submitted to BA as regular submissions.]

Congratulations to the authors, for this paper that expand the modelling of populations investigated by faulty surveys, a poor quality feature that applies to extreme cases like Syria casualties. And possibly COVID-19 victims.

The model considered in this paper, as given by (2.1), is a latent variable model which appears as hyper-parameterised in the sense it involves a large number of parameters and latent variables. First, this means it is essentially intractable outside a Bayesian resolution. Second, within the Bayesian perspective, it calls for identifiability and consistency questions, namely which fraction of the unknown entities is identifiable and which fraction can be consistently estimated, eventually severing the dependence on the prior modelling. Personal experiences with capture-recapture models on social data like drug addict populations showed me that prior choices often significantly drive posterior inference on the population size. Here, it seems that the generative distortion mechanism between registry of individuals and actual records is paramount.

“We now investigate an alternative aspect of the uniform prior distribution of λ given N.”

Since the practical application stressed in the title, namely some of civil casualties in Syria, interrogations take a more topical flavour as one wonders at the connection between the model and the actual data, between the prior modelling and the available prior information. It is however not the strategy adopted in the paper, which instead proposes a generic prior modelling that could be deemed to be non-informative. I find the property that conditioning on the list sizes eliminates the capture probabilities and the duplication rates quite amazing, reminding me indeed of similar properties for conjugate mixtures, although we found the property hard to exploit from a computational viewpoint. And that the hit-miss model provides computationally tractable marginal distributions for the cluster observations.

“Several records of the VDC data set represent unidentified victims and report only the date of death or do not have the first name and report only the relationship with the head of the family.”

This non-informative choice is however quite informative in the misreporting mechanism and does not address the issue that it presumably is misspecified. It indeed makes the assumption that individual label and type of record are jointly enough to explain the probability of misreporting the exact record. In practical cases, it seems more realistic that the probability to appear in a list depends on the characteristics of an individual, hence far from being uniform as well as independent from one list to the next. The same applies to the probability of being misreported. The alternative to the uniform allocation of individuals to lists found in (3.3) remains neutral to the reasons why (some) individuals are missing from (some) lists. No informative input is indeed made here on how duplicates could appear or on how errors are made in registering individuals. Furthermore, given the high variability observed in inferring the number of actual deaths covered by the collection of the two lists, it would have been of interest to include a model comparison assessment, especially when contemplating the clash between the four posteriors in Figure 4.

The implementation of a manageable Gibbs sampler in such a convoluted model is quite impressive and one would welcome further comments from the authors on its convergence properties, since it is facing a large dimensional space. Are there theoretical or numerical irreducibility issues for instance, created by the discrete nature of some latent variables as in mixture models?

deduplication and population size estimation [discussion opened]

Posted in Books, pictures, Running, Statistics, University life with tags , , , , on March 27, 2020 by xi'an

A call (worth disseminating) for discussions on the paper “A Unified Framework for De-Duplication and Population Size Estimation” by [my friends] Andrea Tancredi, Rebecca Steorts, and Brunero Liseo, to appear on the June 2020 issue of Bayesian Analysis. The deadline is 24 April.

Data de-duplication is the process of detecting records in one or more datasets which refer to the same entity. In this paper we tackle the de-duplication process via a latent entity model, where the observed data are perturbed versions of a set of key variables drawn from a finite population of N different entities. The main novelty of our approach is to consider the population size N as an unknown model parameter. As a result, a salient feature of the proposed method is the capability of the model to account for the de-duplication uncertainty in the population size estimation. As by-products of our approach we illustrate the relationships between de-duplication problems and capture-recapture models and we obtain a more adequate prior distribution on the linkage structure. Moreover we propose a novel simulation algorithm for the posterior distribution of the matching configuration based on the marginalization of the key variables at population level. We apply our method to two synthetic data sets comprising German names. In addition we illustrate a real data application, where we match records from two lists which report information about people killed in the recent Syrian conflict.

Colin Blyth (1922-2019)

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , , on March 19, 2020 by xi'an

While reading the IMS Bulletin (of March 2020), I found out that Canadian statistician Colin Blyth had died last summer. While we had never met in person, I remember his very distinctive and elegant handwriting in a few letters he sent me, including the above I have kept (along with an handwritten letter from Lucien Le Cam!). It contains suggestions about revising our Is Pitman nearness a reasonable criterion?, written with Gene Hwang and William Strawderman and which took three years to publish as it was deemed somewhat controversial. It actually appeared in JASA with discussions from Malay Ghosh, John Keating and Pranab K Sen, Shyamal Das Peddada, C. R. Rao, George Casella and Martin T. Wells, and Colin R. Blyth (with a much stronger wording than in the above letter!, like “What can be said but “It isn’t I, it’s you that are crazy?”). While I had used some of his admissibility results, including the admissibility of the Normal sample average in dimension one, e.g. in my book, I had not realised at the time that Blyth was (a) the first student of Erich Lehmann (b) the originator of [the name] Simpson’s paradox, (c) the scribe for Lehmann’s notes that would eventually lead to Testing Statistical Hypotheses and Theory of Point Estimation, later revised with George Casella. And (d) a keen bagpipe player and scholar.

%d bloggers like this: