Archive for discussion

likelihood-free inference by ratio estimation

Posted in Books, Mountains, pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , on September 9, 2019 by xi'an

“This approach for posterior estimation with generative models mirrors the approach of Gutmann and Hyvärinen (2012) for the estimation of unnormalised models. The main difference is that here we classify between two simulated data sets while Gutmann and Hyvärinen (2012) classified between the observed data and simulated reference data.”

A 2018 arXiv posting by Owen Thomas et al. (including my colleague at Warwick, Rito Dutta, CoI warning!) about estimating the likelihood (and the posterior) when it is intractable. Likelihood-free but not ABC, since the ratio likelihood to marginal is estimated in a non- or semi-parametric (and biased) way. Following Geyer’s 1994 fabulous estimate of an unknown normalising constant via logistic regression, the current paper which I read in preparation for my discussion in the ABC optimal design in Salzburg uses probabilistic classification and an exponential family representation of the ratio. Opposing data from the density and data from the marginal, assuming both can be readily produced. The logistic regression minimizing the asymptotic classification error is the logistic transform of the log-ratio. For a finite (double) sample, this minimization thus leads to an empirical version of the ratio. Or to a smooth version if the log-ratio is represented as a convex combination of summary statistics, turning the approximation into an exponential family,  which is a clever way to buckle the buckle towards ABC notions. And synthetic likelihood. Although with a difference in estimating the exponential family parameters β(θ) by minimizing the classification error, parameters that are indeed conditional on the parameter θ. Actually the paper introduces a further penalisation or regularisation term on those parameters β(θ), which could have been processed by Bayesian Lasso instead. This step is essentially dirving the selection of the summaries, except that it is for each value of the parameter θ, at the expense of a X-validation step. This is quite an original approach, as far as I can tell, but I wonder at the link with more standard density estimation methods, in particular in terms of the precision of the resulting estimate (and the speed of convergence with the sample size, if convergence there is).

likelihood-free Bayesian design [SimStat 2019 discussion]

Posted in Statistics with tags , , , , , , , , , , on September 5, 2019 by xi'an

discussione a Padova

Posted in Statistics, University life with tags , , , , , , , , , , , , on March 25, 2013 by xi'an

Here are the slides of my talk in Padova for the workshop Recent Advances in statistical inference: theory and case studies (very similar to the slides for the Varanasi and Gainesville meetings, obviously!, with Peter Müller commenting [at last!] that I had picked the wrong photos from Khajuraho!)

The worthy Padova addendum is that I had two discussants, Stefano Cabras from Universidad Carlos III in Madrid, whose slides are :

and Francesco Pauli, from Trieste, whose slides are:

These were kind and rich discussions with many interesting openings: Stefano’s idea of estimating the pivotal function h is opening new directions, obviously, as it indicates an additional degree of freedom in calibrating the method. Esp. when considering the high variability of the empirical likelihood fit depending on the the function h. For instance, one could start with a large collection of candidate functions and build a regression or a principal component reparameterisation from this collection… (Actually I did not get point #1 about ignoring f: the empirical likelihood is by essence ignoring anything outside the identifying equation, so as long as the equation is valid..) Point #2: Opposing sample free and simulation free techniques is another interesting venue, although I would not say ABC is “sample free”. As to point #3, I will certainly get a look at Monahan and Boos (1992) to see if this can drive the choice of a specific type of pseudo-likelihoods. I like the idea of checking the “coverage of posterior sets” and even more “the likelihood must be the density of a statistic, not necessarily sufficient” as it obviously relates with our current ABC model comparison work… Esp. when the very same paper is mentioned by Francesco as well. Grazie, Stefano! I also appreciate the survey made by Francesco on the consistency conditions, because I think this is an important issue that should be taken into consideration when designing ABC algorithms. (Just pointing out again that, in the theorem of Fearnhead and Prangle (2012) quoting Bernardo and Smith (1992), some conditions are missing for the mathematical consistency to apply.) I also like the agreement we seem to reach about ABC being evaluated per se rather than an a poor man’s Bayesian method. Francesco’s analysis of Monahan and Boos (1992) as validating or not empirical likelihood points out a possible link with the recent coverage analysis of Prangle et al., discussed on the ‘Og a few weeks ago. And an unsuspected link with Larry Wasserman! Grazie, Francesco!

Confidence distributions

Posted in Books, Statistics, Travel, University life with tags , , , , , , , , on June 11, 2012 by xi'an

I was asked by the International Statistical Review editor, Marc Hallin, for a discussion of the paper “Confidence distribution, the frequentist distribution estimator of a parameter — a review” by Min-ge Xie and Kesar Singh, both from Rutgers University. Although the paper is not available on-line, similar and recent reviews and articles can be found, in an 2007 IMS Monograph and a 2012 JASA paper both with Bill Strawderman, as well as a chapter in the recent Fetschrift for Bill Strawderman. The notion of confidence distribution is quite similar to the one of fiducial distribution, introduced by R.A. Fisher, and they both share in my opinion the same drawback, namely that they aim at a distribution over the parameter space without specifying (at least explicitly) a prior distribution. Furthermore, the way the confidence distribution is defined perpetuates the on-going confusion between confidence and credible intervals, in that the cdf on the parameter θ is derived via the inversion of a confidence upper bound (or, equivalently, of a p-value…) Even though this inversion properly defines a cdf on the parameter space, there is no particular validity in the derivation. Either the confidence distribution corresponds to a genuine posterior distribution, in which case I think the only possible interpretation is a Bayesian one. Or  the confidence distribution does not correspond to a genuine posterior distribution, because no prior can lead to this distribution, in which case there is a probabilistic impossibility in using this distribution.  Thus, as a result, my discussion (now posted on arXiv) is rather negative about the benefits of this notion of confidence distribution.

One entry in the review, albeit peripheral, attracted my attention. The authors mention a tech’ report where they exhibit a paradoxical behaviour of a Bayesian procedure: given a (skewed) prior on a pair (p0,p1), and a binomial likelihood, the posterior distribution on p1-p0 has its main mass in the tails of both the prior and the likelihood (“the marginal posterior of d = p1-p0 is more extreme than its prior and data evidence!”). The information provided in the paper is rather sparse on the genuine experiment and looking at two possible priors exhibited nothing of the kind… I went to the authors’ webpages and found a more precise explanation on Min-ge Xie’s page:

Although the contour plot of the posterior distribution sits between those of the prior distribution and the likelihood function, its projected peak is more extreme than the other two. Further examination suggests that this phenomenon is genuine in binomial clinical trials and it would not go away even if we adopt other (skewed) priors (for example, the independent beta priors used in Joseph et al. (1997)). In fact, as long as the center of a posterior distribution is not on the line joining the two centers of the joint prior and likelihood function (as it is often the case with skewed distributions), there exists a direction along which the marginal posterior fails to fall between the prior and likelihood function of the same parameter.

and a link to another paper. Reading through the paper (and in particular Section 4), it appears that the above “paradoxical” picture is the result of the projections of the joint distributions represented in this second picture. By projection, I presume the authors mean integrating out the second component, e.g. p1+p0. This indeed provides the marginal prior of p1-p0, the marginal posterior of p1-p0, but…not the marginal likelihood of p1-p0! This entity is not defined, once again because there is no reference measure on the parameter space which could justify integrating out some parameters in the likelihood. (Overall, I do not think the “paradox” is overwhelming: the joint posterior distribution does precisely the merging of prior and data information we would expect and it is not like the marginal posterior is located in zones with zero prior probability and zero (profile) likelihood. I am also always wary of arguments based on modes, since those are highly dependent on parameterisation.)

Most unfortunately, when searching for more information on the authors’ webpages, I came upon the sad news that Professor Singh had passed away three weeks ago, at the age of 56.  (Professor Xie wrote a touching eulogy of his friend and co-author.) I had only met briefly with Professor Singh during my visit to Rutgers two months ago, but he sounded like an academic who would have enjoyed the kind of debate drafted by my discussion. To the much more important loss to family, friends and faculty represented by Professor Singh demise, I thus add the loss of missing the intellectual challenge of crossing arguments with him. And I look forward discussing the issues with the first author of the paper, Professor Xie.