Archive for Don Fraser

revisiting marginalisation paradoxes [Bayesian reads #1]

Posted in Books, Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , on February 8, 2019 by xi'an

As a reading suggestion for my (last) OxWaSP Bayesian course at Oxford, I included the classic 1973 Marginalisation paradoxes by Phil Dawid, Mervyn Stone [whom I met when visiting UCL in 1992 since he was sharing an office with my friend Costas Goutis], and Jim Zidek. Paper that also appears in my (recent) slides as an exercise. And has been discussed many times on this  ‘Og.

Reading the paper in the train to Oxford was quite pleasant, with a few discoveries like an interesting pike at Fraser’s structural (crypto-fiducial?!) distributions that “do not need Bayesian improper priors to fall into the same paradoxes”. And a most fascinating if surprising inclusion of the Box-Müller random generator in an argument, something of a precursor to perfect sampling (?). And a clear declaration that (right-Haar) invariant priors are at the source of the resolution of the paradox. With a much less clear notion of “un-Bayesian priors” as those leading to a paradox. Especially when the authors exhibit a red herring where the paradox cannot disappear, no matter what the prior is. Rich discussion (with none of the current 400 word length constraint), including the suggestion of neutral points, namely those that do identify a posterior, whatever that means. Funny conclusion, as well:

“In Stone and Dawid’s Biometrika paper, B1 promised never to use improper priors again. That resolution was short-lived and let us hope that these two blinkered Bayesians will find a way out of their present confusion and make another comeback.” D.J. Bartholomew (LSE)

and another

“An eminent Oxford statistician with decidedly mathematical inclinations once remarked to me that he was in favour of Bayesian theory because it made statisticians learn about Haar measure.” A.D. McLaren (Glasgow)

and yet another

“The fundamentals of statistical inference lie beneath a sea of mathematics and scientific opinion that is polluted with red herrings, not all spawned by Bayesians of course.” G.N. Wilkinson (Rothamsted Station)

Lindley’s discussion is more serious if not unkind. Dennis Lindley essentially follows the lead of the authors to conclude that “improper priors must go”. To the point of retracting what was written in his book! Although concluding about the consequences for standard statistics, since they allow for admissible procedures that are associated with improper priors. If the later must go, the former must go as well!!! (A bit of sophistry involved in this argument…) Efron’s point is more constructive in this regard since he recalls the dangers of using proper priors with huge variance. And the little hope one can hold about having a prior that is uninformative in every dimension. (A point much more blatantly expressed by Dickey mocking “magic unique prior distributions”.) And Dempster points out even more clearly that the fundamental difficulty with these paradoxes is that the prior marginal does not exist. Don Fraser may be the most brutal discussant of all, stating that the paradoxes are not new and that “the conclusions are erroneous or unfounded”. Also complaining about Lindley’s review of his book [suggesting prior integration could save the day] in Biometrika, where he was not allowed a rejoinder. It reflects on the then intense opposition between Bayesians and fiducialist Fisherians. (Funny enough, given the place of these marginalisation paradoxes in his book, I was mistakenly convinced that Jaynes was one of the discussants of this historical paper. He is mentioned in the reply by the authors.)

complex Cauchys

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , on February 8, 2018 by xi'an

During a visit of Don Fraser and Nancy Reid to Paris-Dauphine where Nancy gave a nice introduction to confidence distributions, Don pointed out to me a 1992 paper by Peter McCullagh on the Cauchy distribution. Following my recent foray into the estimation of the Cauchy location parameter. Among several most interesting aspects of the Cauchy, Peter re-expressed the density of a Cauchy C(θ¹,θ²) as

f(x;θ¹,θ²) = |θ²| / |x-θ|²

when θ=θ¹+ιθ² [a complex number on the half-plane]. Denoting the Cauchy C(θ¹,θ²) as Cauchy C(θ), the property that the ratio aX+b/cX+d follows a Cauchy for all real numbers a,b,c,d,

C(aθ+b/cθ+d)

[when X is C(θ)] follows rather readily. But then comes the remark that

“those properties follow immediately from the definition of the Cauchy as the ratio of two correlated normals with zero mean.”

which seems to relate to the conjecture solved by Natesh Pillai and Xiao-Li Meng a few years ago. But the fact that  a ratio of two correlated centred Normals is Cauchy is actually known at least from the1930’s, as shown by Feller (1930, Biometrika) and Geary (1930, JRSS B).

Darmois, Koopman, and Pitman

Posted in Books, Statistics with tags , , , , , , , , on November 15, 2017 by xi'an

When [X’ed] seeking a simple proof of the Pitman-Koopman-Darmois lemma [that exponential families are the only types of distributions with constant support allowing for a fixed dimension sufficient statistic], I came across a 1962 Stanford technical report by Don Fraser containing a short proof of the result. Proof that I do not fully understand as it relies on the notion that the likelihood function itself is a minimal sufficient statistic.

Bayes is typically wrong…

Posted in pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , on May 3, 2017 by xi'an

In Harvard, this morning, Don Fraser gave a talk at the Bayesian, Fiducial, and Frequentist conference where he repeated [as shown by the above quote] the rather harsh criticisms on Bayesian inference he published last year in Statistical Science. And which I discussed a few days ago. The “wrongness” of Bayes starts with the completely arbitrary choice of the prior, which Don sees as unacceptable, and then increases because the credible regions are not confident regions, outside natural parameters from exponential families (Welch and Peers, 1963). And one-dimensional parameters using the profile likelihood (although I cannot find a proper definition of what the profile likelihood is in the paper, apparently a plug-in version that is not a genuine likelihood, hence somewhat falling under the same this-is-not-a-true-probability cleaver as the disputed Bayesian approach).

“I expect we’re all missing something, but I do not know what it is.” D.R. Cox, Statistical Science, 1994

And then Nancy Reid delivered a plenary lecture “Are we converging?” on the afternoon that compared most principles (including objective if not subjective Bayes) against different criteria, like consistency, nuisance elimination, calibration, meaning of probability, and so on.  In an highly analytic if pessimistic panorama. (The talk should be available on line at some point soon.)

Bayes posterior just quick and dirty on X’idated

Posted in Statistics, Travel, University life with tags , , , , on February 22, 2012 by xi'an

As a coincidence, I noticed that Don Fraser’s recent discussion paper `Is Bayes posterior just quick and dirty confidence?’ will be discussed this Friday (18:00 UTC) on the Cross Validated Journal Club. I do not know whether or not to interpret the information “The author confirmed his presence at the event” as meaning Don Fraser will be on line to discuss his paper with X’ed members Feel free to join anyway if you have 20 reputation points or plan to get those by Friday! (I will be in the train coming back from Oxford. Oxford, England, not Mississippi!)

Improving convergence of Data Augmentation [published]

Posted in Statistics with tags , , , , on November 4, 2011 by xi'an

Our paper with Jim Hobert and Vivek Roy, Improving the Convergence Properties of the Data Augmentation Algorithm with an Application to Bayesian Mixture Modeling, has now appeared in Statistical Science and is available on Project Euclid. (For IMS members, at least.) Personally, this is an important paper, not only for providing an exact convergence evaluation for mixtures,  not only for sharing exciting research days with my friends Jim and Vivek, but also for finalising a line of research somehow started in 1993 when Richard Tweedie visited me in Paris and when I visited him in Fort Collins… Coincidentally, my discussion of Don Fraser’s provocative Is Bayes Posterior just Quick and Dirty Confidence? also appeared in this issue of Statistical Science.

Don Fraser’s rejoinder

Posted in Books, Statistics, University life with tags , , , , , , on August 24, 2011 by xi'an

“How can a discipline, central to science and to critical thinking, have two methodologies, two logics, two approaches that frequently give substantially different answers to the same problems. Any astute person from outside would say “Why don’t they put their house in order?”” Don Fraser

Following the discussions of his Statistical Science paper Is Bayes posterior just quick and dirty confidence?, by Kesar Singh and Minge Xie, Larry Wasserman (who coined the neologism Frasian for the occasion), Tong Zhang, and myself, Don Fraser has written his rejoinder to the discussion (although in Biometrika style it is for Statistical Science!). His conclusion that “no one argued that the use of the conditional probability lemma with an imaginary input had powers beyond confidence, supernatural powers” is difficult to escape, as I would not dream of promoting a super-Bayes jumping to the rescue of bystanders misled by evil frequentists!!! More seriously, this rejoinder makes me reflect on lectures from the past years, from those on the diverse notions of probability (Jeffreys, Keynes, von Mises, and Burdzy) to those on scientific discovery (mostly Seber‘s, and the promising Error and Inference by Mayo and Spanos I just received).