Archive for Don Fraser

news from ISBA

Posted in Kids, pictures, Statistics, University life with tags , , , , , , , , , , on March 31, 2021 by xi'an

Some news and reminders from the latest ISBA Bulletin (which also contains an obituary of Don Fraser by Christian Genest):

  • Remember that the registration for ISBA 2021 is free till 1 May! The conference is fully online, from 28 June to 2 July
  • the Bayesian young statisticians meeting BAYSM 21 will take place online, 1-3 September
  • the useR! 2021 conference will also take place online, July 5-9
  • the MHC2021 (Mixtures, Hidden Markov models, Clustering) conference will take place physically and online at Orsay, France, 2-4 June

Don Fraser (1925-2020)

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , on December 24, 2020 by xi'an

I just received the very sad news that Don Fraser, emeritus professor of statistics at the University of Toronto, passed away this Monday, 21 December 2020. He was a giant of the field, with a unique ability for abstract modelling and he certainly pushed fiducial statistics much further than Fisher ever did. He also developed a theory of structural  inference that came close to objective Bayesian statistics, although he remained quite critical of the Bayesian approach (always in a most gentle manner, as he was a very nice man!). And most significantly contributed to high order asymptotics, to the critical analysis of ancilarity and sufficiency principles, and more beyond. (Statistical Science published a conversation with Don, in 2004, providing more personal views on his career till then.) I met with Don and Nancy rather regularly over the years, as they often attended and talked at (objective) Bayesian meetings, from the 1999 edition in Granada, to the last one in Warwick in 2019. I also remember a most enjoyable barbecue together, along with Ivar Ekeland and his family, during JSM 2018, on Jericho Park Beach, with a magnificent sunset over the Burrard Inlet. Farewell, Don!

revisiting marginalisation paradoxes [Bayesian reads #1]

Posted in Books, Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , on February 8, 2019 by xi'an

As a reading suggestion for my (last) OxWaSP Bayesian course at Oxford, I included the classic 1973 Marginalisation paradoxes by Phil Dawid, Mervyn Stone [whom I met when visiting UCL in 1992 since he was sharing an office with my friend Costas Goutis], and Jim Zidek. Paper that also appears in my (recent) slides as an exercise. And has been discussed many times on this  ‘Og.

Reading the paper in the train to Oxford was quite pleasant, with a few discoveries like an interesting pike at Fraser’s structural (crypto-fiducial?!) distributions that “do not need Bayesian improper priors to fall into the same paradoxes”. And a most fascinating if surprising inclusion of the Box-Müller random generator in an argument, something of a precursor to perfect sampling (?). And a clear declaration that (right-Haar) invariant priors are at the source of the resolution of the paradox. With a much less clear notion of “un-Bayesian priors” as those leading to a paradox. Especially when the authors exhibit a red herring where the paradox cannot disappear, no matter what the prior is. Rich discussion (with none of the current 400 word length constraint), including the suggestion of neutral points, namely those that do identify a posterior, whatever that means. Funny conclusion, as well:

“In Stone and Dawid’s Biometrika paper, B1 promised never to use improper priors again. That resolution was short-lived and let us hope that these two blinkered Bayesians will find a way out of their present confusion and make another comeback.” D.J. Bartholomew (LSE)

and another

“An eminent Oxford statistician with decidedly mathematical inclinations once remarked to me that he was in favour of Bayesian theory because it made statisticians learn about Haar measure.” A.D. McLaren (Glasgow)

and yet another

“The fundamentals of statistical inference lie beneath a sea of mathematics and scientific opinion that is polluted with red herrings, not all spawned by Bayesians of course.” G.N. Wilkinson (Rothamsted Station)

Lindley’s discussion is more serious if not unkind. Dennis Lindley essentially follows the lead of the authors to conclude that “improper priors must go”. To the point of retracting what was written in his book! Although concluding about the consequences for standard statistics, since they allow for admissible procedures that are associated with improper priors. If the later must go, the former must go as well!!! (A bit of sophistry involved in this argument…) Efron’s point is more constructive in this regard since he recalls the dangers of using proper priors with huge variance. And the little hope one can hold about having a prior that is uninformative in every dimension. (A point much more blatantly expressed by Dickey mocking “magic unique prior distributions”.) And Dempster points out even more clearly that the fundamental difficulty with these paradoxes is that the prior marginal does not exist. Don Fraser may be the most brutal discussant of all, stating that the paradoxes are not new and that “the conclusions are erroneous or unfounded”. Also complaining about Lindley’s review of his book [suggesting prior integration could save the day] in Biometrika, where he was not allowed a rejoinder. It reflects on the then intense opposition between Bayesians and fiducialist Fisherians. (Funny enough, given the place of these marginalisation paradoxes in his book, I was mistakenly convinced that Jaynes was one of the discussants of this historical paper. He is mentioned in the reply by the authors.)

complex Cauchys

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , on February 8, 2018 by xi'an

During a visit of Don Fraser and Nancy Reid to Paris-Dauphine where Nancy gave a nice introduction to confidence distributions, Don pointed out to me a 1992 paper by Peter McCullagh on the Cauchy distribution. Following my recent foray into the estimation of the Cauchy location parameter. Among several most interesting aspects of the Cauchy, Peter re-expressed the density of a Cauchy C(θ¹,θ²) as

f(x;θ¹,θ²) = |θ²| / |x-θ|²

when θ=θ¹+ιθ² [a complex number on the half-plane]. Denoting the Cauchy C(θ¹,θ²) as Cauchy C(θ), the property that the ratio aX+b/cX+d follows a Cauchy for all real numbers a,b,c,d,

C(aθ+b/cθ+d)

[when X is C(θ)] follows rather readily. But then comes the remark that

“those properties follow immediately from the definition of the Cauchy as the ratio of two correlated normals with zero mean.”

which seems to relate to the conjecture solved by Natesh Pillai and Xiao-Li Meng a few years ago. But the fact that  a ratio of two correlated centred Normals is Cauchy is actually known at least from the1930’s, as shown by Feller (1930, Biometrika) and Geary (1930, JRSS B).

Darmois, Koopman, and Pitman

Posted in Books, Statistics with tags , , , , , , , , on November 15, 2017 by xi'an

When [X’ed] seeking a simple proof of the Pitman-Koopman-Darmois lemma [that exponential families are the only types of distributions with constant support allowing for a fixed dimension sufficient statistic], I came across a 1962 Stanford technical report by Don Fraser containing a short proof of the result. Proof that I do not fully understand as it relies on the notion that the likelihood function itself is a minimal sufficient statistic.

%d bloggers like this: