**I**n another recent arXival, Christophe Andrieu, Sinan Yıldırım, Arnaud Doucet, and Nicolas Chopin study the impact of averaging estimators of acceptance ratios in Metropolis-Hastings algorithms. (It is connected with the earlier arXival rephrasing Metropolis-Hastings in terms of involutions discussed here.)

“… it is possible to improve performance of this algorithm by using a modification where the acceptance ratio r(ξ) is integrated with respect to a subset of the proposed variables.”

This interpretation of the current proposal makes it a form of Rao-Blackwellisation, explicitly mentioned on p.18, where, using a mixture proposal, with an adapted acceptance probability, it depends on the integrated acceptance ratio only. Somewhat magically using this ratio and its inverse with probability ½. And it increases the average Metropolis-Hastings acceptance probability (albeit with a larger number of simulations). Since the ideal averaging is rarely available, the authors implement a Monte Carlo averaging version. With applications to the exchange algorithm and to reversible jump MCMC. The major application is to pseudo-marginal settings with a high complexity (in the number T of terms) and where the authors’ approach does scale efficiently with T. There is even an ABC side to the story as one illustration is made of the ABC approximation to the posterior of an α-stable sample. As an encompassing proposal for handling Metropolis-Hastings environments with latent variables and several versions of the acceptance ratios, this is quite an interesting paper that I think we will study in further detail with our students.