Archive for drug users

agent-based models

Posted in Books, pictures, Statistics with tags , , , , , , , , on October 2, 2018 by xi'an

An August issue of Nature I recently browsed [on my NUS trip] contained a news feature on agent- based models applied to understanding the opioid crisis in US. (With a rather sordid picture of a drug injection in Philadelphia, hence my own picture.)

To create an agent-based model, researchers first ‘build’ a virtual town or region, sometimes based on a real place, including buildings such as schools and food shops. They then populate it with agents, using census data to give each one its own characteristics, such as age, race and income, and to distribute the agents throughout the virtual town. The agents are autonomous but operate within pre-programmed routines — going to work five times a week, for instance. Some behaviours may be more random, such as a 5% chance per day of skipping work, or a 50% chance of meeting a certain person in the agent’s network. Once the system is as realistic as possible, the researchers introduce a variable such as a flu virus, with a rate and pattern of spread based on its real-life characteristics. They then run the simulation to test how the agents’ behaviour shifts when a school is closed or a vaccination campaign is started, repeating it thousands of times to determine the likelihood of different outcomes.

While I am obviously supportive of simulation based solutions, I cannot but express some reservation at the outcome, given that it is the product of the assumptions in the model. In Bayesian terms, this is purely prior predictive rather than posterior predictive. There is no hard data to create “realism”, apart from the census data. (The article also mixes the outcome of the simulation with real data. Or epidemiological data, not yet available according to the authors.)

In response to the opioid epidemic, Bobashev’s group has constructed Pain Town — a generic city complete with 10,000 people suffering from chronic pain, 70 drug dealers, 30 doctors, 10 emergency rooms and 10 pharmacies. The researchers run the model over five simulated years, recording how the situation changes each virtual day.

This is not to criticise the use of such tools to experiment with social, medical or political interventions, which practically and ethically cannot be tested in real life and working with such targeted versions of the Sims game can paradoxically be more convincing when dealing with policy makers. If they do not object at the artificiality of the outcome, as they often do for climate change models. Just from reading this general public article, I thus wonder at whether model selection and validation tools are implemented in conjunction with agent-based models…

To predict and serve?

Posted in Books, pictures, Statistics with tags , , , , , , , , , , , on October 25, 2016 by xi'an

Kristian Lum and William Isaac published a paper in Significance last week [with the above title] about predictive policing systems used in the USA and presumably in other countries to predict future crimes [and therefore prevent them]. This sounds like a good idea for a science fiction plot, à la Philip K Dick [in his short story, The Minority Report], but that it is used in real life definitely sounds frightening, especially when the civil rights of the targeted individuals are impacted. (Although some politicians in different democratic countries increasingly show increasing contempt for keeping everyone’ rights equal…) I also feel terrified by the social determinism behind the very concept of predicting crime from socio-economic data (and possibly genetic characteristics in a near future, bringing us back to the dark days of physiognomy!)

“…crimes that occur in locations frequented by police are more likely to appear in the database simply because that is where the police are patrolling.”

Kristian and William examine in this paper one statistical aspect of the police forces relying on crime prediction software, namely the bias in the data exploited by the software and in the resulting policing. (While the accountability of the police actions when induced by such software is not explored, this is obviously related to the Nature editorial of last week, “Algorithm and blues“, which [in short] calls for watchdogs on AIs and decision algorithms.) When the data is gathered from police and justice records, any bias in checks, arrests, and condemnations will be reproduced in the data and hence will repeat the bias in targeting potential criminals. As aptly put by the authors, the resulting machine learning algorithm will be “predicting future policing, not future crime.” Worse, by having no reservation about over-fitting [the more predicted crimes the better], it will increase the bias in the same direction. In the Oakland drug-user example analysed in the article, the police concentrates almost uniquely on a few grid squares of the city, resulting into the above self-predicting fallacy. However, I do not see much hope in using other surveys and datasets towards eliminating this bias, as they also carry their own shortcomings. Even without biases, predicting crimes at the individual level just seems a bad idea, for statistical and ethical reasons.