Archive for empirical likelihood

conditioning on insufficient statistics in Bayesian regression

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , on October 23, 2021 by xi'an

“…the prior distribution, the loss function, and the likelihood or sampling density (…) a healthy skepticism encourages us to question each of them”

A paper by John Lewis, Steven MacEachern, and Yoonkyung Lee has recently appeared in Bayesian Analysis. Starting with the great motivation of a misspecified model requiring the use of a (thus necessarily) insufficient statistic and moving to their central concern of simulating the posterior based on that statistic.

Model misspecification remains understudied from a B perspective and this paper is thus most welcome in addressing the issue. However, when reading through, one of my criticisms is in defining misspecification as equivalent to outliers in the sample. An outlier model is an easy case of misspecification, in the end, since the original model remains meaningful. (Why should there be “good” versus “bad” data) Furthermore, adding a non-parametric component for the unspecified part of the data would sound like a “more Bayesian” alternative. Unrelated, I also idly wondered at whether or not normalising flows could be used in this instance..

The problem in selecting a T (Darjeeling of course!) is not really discussed there, while each choice of a statistic T leads to a different signification to what misspecified means and suggests a comparison with Bayesian empirical likelihood.

“Acceptance rates of this [ABC] algorithm can be intolerably low”

Erm, this is not really the issue with ABC, is it?! Especially when the tolerance is induced by the simulations themselves.

When I reached the MCMC (Gibbs?) part of the paper, I first wondered at its relevance for the mispecification issues before realising it had become the focus of the paper. Now, simulating the observations conditional on a value of the summary statistic T is a true challenge. I remember for instance George Casella mentioning it in association with a Student’s t sample in the 1990’s and Kerrie and I having an unsuccessful attempt at it in the same period. Persi Diaconis has written several papers on the problem and I am thus surprised at the dearth of references here, like the rather recent Byrne and Girolami (2013), Florens and Simoni (2015), or Bornn et al. (2019). In the present case, the  linear model assumed as the true model has the exceptional feature that it leads to a feasible transform of an unconstrained simulation into a simulation with fixed statistics, with no measure theoretic worries if not free from considerable efforts to establish the operation is truly valid… And, while simulating (θ,y) makes perfect sense in an insufficient setting, the cost is then precisely the same as when running a vanilla ABC. Which brings us to the natural comparison with ABC. While taking ε=0 may sound as optimal for being “exact”, it is not from an ABC perspective since the convergence rate of the (summary) statistic should be roughly the one of the tolerance (Fearnhead and Liu, Frazier et al., 2018).

“[The Borel Paradox] shows that the concept of a conditional probability with regard to an isolated given hypothesis whose probability equals 0 is inadmissible.” A. Колмого́ров (1933)

As a side note for measure-theoretic purists, the derivation of the conditional of y given T(y)=T⁰ is arbitrary since the event has probability zero (ie, the conditioning set is of measure zero). See the Borel-Kolmogorov paradox. The computations in the paper are undoubtedly correct, but this is only one arbitrary choice of a transform (or conditioning σ-algebra).

variational approximation to empirical likelihood ABC

Posted in Statistics with tags , , , , , , , , , , , , , , , , , , on October 1, 2021 by xi'an

Sanjay Chaudhuri and his colleagues from Singapore arXived last year a paper on a novel version of empirical likelihood ABC that I hadn’t yet found time to read. This proposal connects with our own, published with Kerrie Mengersen and Pierre Pudlo in 2013 in PNAS. It is presented as an attempt at approximating the posterior distribution based on a vector of (summary) statistics, the variational approximation (or information projection) appearing in the construction of the sampling distribution of the observed summary. (Along with a weird eyed-g symbol! I checked inside the original LaTeX file and it happens to be a mathbbmtt g, that is, the typewriter version of a blackboard computer modern g…) Which writes as an entropic correction of the true posterior distribution (in Theorem 1).

“First, the true log-joint density of the observed summary, the summaries of the i.i.d. replicates and the parameter have to be estimated. Second, we need to estimate the expectation of the above log-joint density with respect to the distribution of the data generating process. Finally, the differential entropy of the data generating density needs to be estimated from the m replicates…”

The density of the observed summary is estimated by empirical likelihood, but I do not understand the reasoning behind the moment condition used in this empirical likelihood. Indeed the moment made of the difference between the observed summaries and the observed ones is zero iff the true value of the parameter is used in the simulation. I also fail to understand the connection with our SAME procedure (Doucet, Godsill & X, 2002), in that the empirical likelihood is based on a sample made of pairs (observed,generated) where the observed part is repeated m times, indeed, but not with the intent of approximating a marginal likelihood estimator… The notion of using the actual data instead of the true expectation (i.e. as a unbiased estimator) at the true parameter value is appealing as it avoids specifying the exact (or analytical) value of this expectation (as in our approach), but I am missing the justification for the extension to any parameter value. Unless one uses an ancillary statistic, which does not sound pertinent… The differential entropy is estimated by a Kozachenko-Leonenko estimator implying k-nearest neighbours.

“The proposed empirical likelihood estimates weights by matching the moments of g(X¹), , g(X) with that of
g(X), without requiring a direct relationship with the parameter. (…) the constraints used in the construction of the empirical likelihood are based on the identity in (7), which can only be satisfied when θ = θ⁰. “

Although I am feeling like missing one argument, the later part of the paper seems to comfort my impression, as quoted above. Meaning that the approximation will fare well only in the vicinity of the true parameter. Which makes it untrustworthy for model choice purposes, I believe. (The paper uses the g-and-k benchmark without exploiting Pierre Jacob’s package that allows for exact MCMC implementation.)

a new rule for adaptive importance sampling

Posted in Books, Statistics with tags , , , , , , , , , on March 5, 2019 by xi'an

Art Owen and Yi Zhou have arXived a short paper on the combination of importance sampling estimators. Which connects somehow with the talk about multiple estimators I gave at ESM last year in Helsinki. And our earlier AMIS combination. The paper however makes two important assumptions to reach optimal weighting, which is inversely proportional to the variance:

  1. the estimators are uncorrelated if dependent;
  2. the variance of the k-th estimator is of order a (negative) power of k.

The later is puzzling when considering a series of estimators, in that k appears to act as a sample size (as in AMIS), the power is usually unknown but also there is no reason for the power to be the same for all estimators. The authors propose to use ½ as the default, both because this is the standard Monte Carlo rate and because the loss in variance is then minimal, being 12% larger.

As an aside, Art Owen also wrote an invited discussion “the unreasonable effectiveness of Monte Carlo” of ” Probabilistic Integration: A Role in Statistical Computation?” by François-Xavier Briol, Chris  Oates, Mark Girolami (Warwick), Michael Osborne and Deni Sejdinovic, to appear in Statistical Science, discussion that contains a wealth of smart and enlightening remarks. Like the analogy between pseudo-random number generators [which work unreasonably well!] vs true random numbers and Bayesian numerical integration versus non-random functions. Or the role of advanced bootstrapping when assessing the variability of Monte Carlo estimates (citing a paper of his from 1992). Also pointing out at an intriguing MCMC paper by  Michael Lavine and Jim Hodges to appear in The American Statistician.

a book and three chapters on ABC

Posted in Statistics with tags , , , , , , , , , , on January 9, 2019 by xi'an

In connection with our handbook on mixtures being published, here are three chapters I contributed to from the Handbook of ABC, edited by Scott Sisson, Yanan Fan, and Mark Beaumont:

6. Likelihood-free Model Choice, by J.-M. Marin, P. Pudlo, A. Estoup and C.P. Robert

12. Approximating the Likelihood in ABC, by  C. C. Drovandi, C. Grazian, K. Mengersen and C.P. Robert

17. Application of ABC to Infer about the Genetic History of Pygmy Hunter-Gatherers Populations from Western Central Africa, by A. Estoup, P. Verdu, J.-M. Marin, C. Robert, A. Dehne-Garcia, J.-M. Cornuet and P. Pudlo

French Econometrics [discussion]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , on November 30, 2018 by xi'an

This Friday, I am briefly taking part in the 10th French Econometrics Conference as a discussant of Anna Simoni’s (CREST) talk, based on a paper co-written with Sid Chib and Minchul Shin. The conference is located at the Paris School of Economics (PSE), on Paris South End, in an impressive new building. The topic of the paper is a Bayesian empirical likelihood approach to the econometrics notion of moments model. Which I discussed here during ISBA last summer since Sid spoke (twice!) there.

%d bloggers like this: