**A** newly arXived paper on the error in nested sampling, written by Higson and co-authors, and read in Berlin, looks at the difficult task of evaluating the sampling error of nested sampling. The conclusion is essentially negative in that the authors recommend multiple runs of the method to assess the magnitude of the variability of the output by bootstrap, i.e. to call for the most empirical approach…

The core of this difficulty lies in the half-plug-in, half-quadrature, half-Monte Carlo (!) feature of the nested sampling algorithm, in that (i) the truncation of the unit interval is based on a expectation of the mass of each shell (i.e., the zone between two consecutive isoclines of the likelihood, (ii) the evidence estimator is a quadrature formula, and (iii) the level of the likelihood at the truncation is replaced with a simulated value that is not even unbiased (and correlated with the previous value in the case of an MCMC implementation). As discussed in our paper with Nicolas, the error in the evidence approximation is of the same order as other Monte Carlo methods in that it gets down like the square root of the number of terms at each iteration. Contrary to earlier intuitions that focussed on the error due to the quadrature.

But the situation is much less understood when the resulting sample is used for estimation of quantities related with the posterior distribution. With no clear approach to assess and even less correct the resulting error, since it is not solely a Monte Carlo error. As noted by the authors, the quadrature approximation to the univariate integral replaces the unknown prior weight of a shell with its Beta order statistic expectation *and* the average of the likelihood over the shell with a single (uniform???) realisation. Or the mean value of a transform of the parameter with a single (biased) realisation. Since most posterior expectations can be represented as integrals over likelihood levels of the average value over an iso-likelihood contour. The approach advocated in the paper involved multiple threads of an “unwoven nested sampling run”, which means launching n nested sampling runs with one living term from the n currents living points in the current nested sample. (Those threads may then later be recombined into a single nested sample.) This is the starting point to a nested flavour of bootstrapping, where threads are sampled with replacement, from which confidence intervals and error estimates can be constructed. (The original notion appears in Skilling’s 2006 paper, but I missed it.)

The above graphic is an attempt within the paper at representing the (marginal) posterior of a transform f(θ). That I do not fully understand… The notations are rather horrendous as X is not the data but the prior probability for the likelihood to be above a given bound which is actually the corresponding quantile. (There is no symbol for data and £ is used for the likelihood function as well as realisations of the likelihood function…) A vertical slice on the central panel gives the posterior distribution of f(θ) given the event that the likelihood is in the corresponding upper tail. Or given the corresponding shell (?).