*(This is the fifth post on ***Error and Inference**, *as previously being a raw and naïve reaction following a linear and slow reading of the book, rather than a deeper and more informed criticism.)*

*“**‘Frequentist methods achieve an objective connection to hypotheses about the data-generating process by being constrained and calibrated by the method’s error probabilities in relation to these models .”*—D. Cox and D. Mayo, p.277, **Error and Inference**, 2010

**T**he second part of the seventh chapter of **Error and Inference**, is David Cox’s and Deborah Mayo’s “*Objectivity and conditionality in frequentist inference*“. (Part of the section is available on Google books.) The purpose is clear and the chapter quite readable from a statistician’s perspective. I however find it difficult to quantify objectivity by first conditioning on “a statistical model postulated to have generated data”, as again this assumes the existence of a “true” probability model where “probabilities (…) are equal or close to the actual relative frequencies”. As earlier stressed by Andrew:

“I don’t think it’s helpful to speak of “objective priors.” As a scientist, I try to be objective as much as possible, but I think the objectivity comes in the principle, not the prior itself. A prior distribution–any statistical model–reflects information, and the appropriate objective procedure will depend on what information you have.”

**T**he paper opposes the likelihood, Bayesian, and frequentist methods, reproducing what Gigerenzer called the “superego, the ego, and the id” in his paper on statistical significance. Cox and Mayo stress from the start that the frequentist approach is (more) objective because it is based on the sampling distribution of the test. My primary problem with this thesis is that the “hypothetical long run” (p.282) does not hold in realistic settings. Even in the event of a reproduction of similar or identical tests, a sequential procedure exploiting everything that has been observed so far is more efficient than the mere replication of the same procedure solely based on the current observation.

*“**Virtually all (…) models are to some extent provisional, which is precisely what is expected in the building up of knowledge.”*—D. Cox and D. Mayo, p.283, **Error and Inference**, 2010

**T**he above quote is something I completely agree with, being another phrasing of George Box’s “all models are wrong”, but this transience of working models is a good reason in my opinion to account for the possibility of alternative working models from the start of the statistical analysis. Hence for an inclusion of those models in the statistical analysis equally from the start. Which leads almost inevitably to a Bayesian formulation of the testing problem.

*“**‘Perhaps the confusion [over the role of sufficient statistics] stems in part because the various inference schools accept the broad, but not the detailed, implications of sufficiency.”*—D. Cox and D. Mayo, p.286, **Error and Inference**, 2010

**T**he discussion over the *sufficiency principle* is interesting, as always. The authors propose to solve the confusion between the sufficiency principle and the frequentist approach by assuming that inference “is relative to the particular experiment, the type of inference, and the overall statistical approach” (p.287). This creates a barrier between sampling distributions that avoids the binomial versus negative binomial paradox always stressed in the Bayesian literature. But the solution is somehow tautological: by conditioning on the sampling distribution, it avoids the difficulties linked with several sampling distributions all producing the same likelihood. After my recent work on ABC model choice, I am however less excited about the sufficiency principle as the existence of [non-trivial] sufficient statistics is quite the rare event. Especially across models. The section (pp. 288-289) is also revealing about the above “objectivity” of the frequentist approach in that the derivation of a test taking large value away from the null with a well-known distribution under the null is not an automated process, esp. when nuisance parameters cannot be escaped from (pp. 291-294). Achieving separation from nuisance parameters, i.e. finding statistics that can be conditioned upon to eliminate those nuisance parameters, does not seem feasible outside well-formalised models related with exponential families. Even in such formalised models, a (clear?) element of arbitrariness is involved in the construction of the separations, which implies that the objectivity is under clear threat. The chapter recognises this limitation in Section 9.2 (pp.293-294), however it argues that separation is much more common in the asymptotic sense and opposes the approach to the Bayesian averaging over the nuisance parameters, which “may be vitiated by faulty priors” (p.294). I am not convinced by the argument, given that the (approximate) condition approach amount to replace the unknown nuisance parameter by an estimator, without accounting for the variability of this estimator. Averaging brings the right (in a consistency sense) penalty.

**A** compelling section is the one about the weak conditionality principle (pp. 294-298), as it objects to the usual statement that a frequency approach breaks this principle. In a mixture experiment about the same parameter θ, inferences made conditional on the experiment “*are appropriately drawn in terms of the sampling behavior* in the experiment known to have been performed” (p. 296). This seems hardly objectionable, as stated. And I must confess the sin of stating the opposite as *The Bayesian Choice* has this remark (Example 1.3.7, p.18) that the classical confidence interval averages over the experiments… *Mea culpa!* The term experiment validates the above conditioning in that several experiments could be used to measure θ, each with a different *p*-value. I will not argue with this. I could however argue about “conditioning is warranted to achieve objective frequentist goals” (p. 298) in that the choice of the conditioning, among other things, weakens the objectivity of the analysis. In a sense the above pirouette out of the conditioning principle paradox suffers from the same weakness, namely that when two distributions characterise the same data (the mixture and the conditional distributions), there is a choice to be made between “good” and “bad”. Nonetheless, an approach based on the mixture remains frequentist if non-optimal… (The chapter later attacks the derivation of the likelihood principle, I will come back to it in a later post.)

*“**‘Many seem to regard reference Bayesian theory to be a resting point until satisfactory subjective or informative priors are available. It is hard to see how this gives strong support to the **reference prior research program*.”—D. Cox and D. Mayo, p.302, **Error and Inference**, 2010

**A** section also worth commenting is (unsurprisingly!) the one addressing the limitations of the Bayesian alternatives (pp. 298–302). It however dismisses right away the personalistic approach to priors by (predictably if hastily) considering it fails the objectivity canons. This seems a wee quick to me, as the choice of a prior is (a) the choice of a reference probability measure against which to assess the information brought by the data, not clearly less objective than picking one frequentist estimator or another, and (b) a personal construction of the prior can also be defended on objective grounds, based on the past experience of the modeler. That it varies from one modeler to the next is not an indication of subjectivity *per se*, simply of different past experiences. Cox and Mayo then focus on reference priors, à la Bernardo-Berger, once again pointing out the lack of uniqueness of those priors as a major flaw. While the sub-chapter agrees on the understanding of those priors as *convention* or reference priors, aiming at maximising the input from the data, it gets stuck on the impropriety of such priors: “if priors are not probabilities, what then is the interpretation of a posterior?” (p.299). This seems like a strange comment to me: the interpretation of a posterior is that it is a probability distribution and this is the only mathematical constraint one has to impose on a prior. (Which may be a problem in the derivation of reference priors.) As detailed in *The Bayesian Choice* among other books, there are many compelling reasons to invite improper priors into the game. (And one not to, namely the difficulty with point null hypotheses.) While I agree that the fact that some reference priors (like *matching priors*, whose discussion p. 302 escapes me) have good frequentist properties is not compelling within a Bayesian framework, it seems a good enough answer to the more general criticism about the lack of objectivity: in that sense, frequency-validated reference priors are part of the huge package of frequentist procedures and cannot be dismissed on the basis of being Bayesian. That reference priors are possibly at odd with the likelihood principle does not matter very much: the shape of the sampling distribution is part of the prior information, not of the likelihood *per se*. The final argument (Section 12) that Bayesian model choice requires the preliminary derivation of “the possible departures that might arise” (p.302) has been made at several points in **Error and Inference**. Besides being in my opinion a valid working principle, i.e. selecting the most appropriate albeit false model, this definition of well-defined alternatives is mimicked by the assumption of “statistics whose distribution does not depend on the model assumption” (p. 302) found in the same last paragraph.

**I**n conclusion this (sub-)chapter by David Cox and Deborah Mayo is (as could be expected!) a deep and thorough treatment of the frequentist approach to the sufficiency and (weak) conditionality principle. It however fails to convince me that there exists a “unique and unambiguous” frequentist approach to all but the most simple problems. At least, from reading this chapter, I cannot find a working principle that would lead me to this single unambiguous frequentist procedure.