Several interesting entries in Le Monde Science & Médecine of this week (24 Jan 2018):
- This incredible report in the Journal of Ethnobiology of fire-spreading raptors, Black Kite, Whistling Kite, and Brown Falcon, who carry burning material to start fires further away and thus expose rodents and insects. This behaviour was already reported in some Aboriginal myths, as now backed up by independent observations.
- A report by Etienne Ghys of the opening of a new CNRS unit in mathematics in… London! The Abraham de Moivre Laboratory is one of the 36 mixed units located outside France to facilitate exchanges and collaborations. In the current case, in collaboration with Imperial. And as a mild antidote to Brexit and its consequences on exchanges between the UK and the EU. (When discussing Martin Hairer’s conference, Etienne forgot to mention his previous affiliation with Warwick.)
- A good-will-bad-stats article on the impact of increasing the number of urban bicycle trips to reduce the number of deaths. With the estimation that if 25% of the daily trips over 167 European (and British!) cities were done by bike, 10,000 deaths per year could be avoided! I have not read the original study, but I wonder at the true impact of this increase. If 25% of the commutes are made by bike, the remaining 75% are not and hence use polluting means of transportation. This means more citizens travelling by bike are exposed to the exhausts and fumes of cars, buses, trucks, &tc. Which should see an increase in respiratory diseases, including deaths, rather than a decrease. Unless this measure is associated with banning all exhaust emissions from cities, which does not sound a very likely outcome, even in Paris.
- An incoming happening at Cité internationale des Arts in Paris, on Feb 2-3, entitled “we are not the number we believe we are” (in French), based on the universe(s) of Ursula Le Guin who most sadly passed away the day the journal came out.
- A diffusion of urban riots in the suburbs of Paris in 2005 that closely follows epidemiological models of flu epidemics, using “a single sociological variable characterizing neighbourhood deprivation”. (Estimation of the SIR model is apparently done by maximum likelihood and model comparison by AIC, given the ODE nature of the models, ABC would have been quite appropriate for a Bayesian modelling!)