**I**n 2018, Panayiota Touloupou, research fellow at Warwick, and her co-authors published a paper in Bayesian analysis that somehow escaped my radar, despite standing in my first circle of topics of interest! They construct an importance sampling approach to the approximation of the marginal likelihood, the importance function being approximated from a preliminary MCMC run, and consider the special case when the sampling density (i.e., the likelihood) can be represented as the marginal of a joint density. While this demarginalisation perspective is rather usual, the central point they make is that it is more efficient to estimate the sampling density based on the auxiliary or latent variables than to consider the joint posterior distribution of parameter and latent in the importance sampler. This induces a considerable reduction in dimension and hence explains (in part) why the approach should prove more efficient. Even though the approximation itself is costly, at about 5 seconds per marginal likelihood. But a nice feature of the paper is to include the above graph that includes both computing time and variability for different methods (the blue range corresponding to the marginal importance solution, the red range to RJMCMC and the green range to Chib’s estimate). Note that bridge sampling does not appear on the picture but returns a variability that is similar to the proposed methodology.

## Archive for evidence

## marginal likelihood with large amounts of missing data

Posted in Books, pictures, Statistics with tags Bayesian Analysis, Chib's approximation, evidence, harmonic mean estimator, importance sampling, marginal likelihood, normalising constant, reversible jump, University of Warwick on October 20, 2020 by xi'an## scalable Metropolis-Hastings, nested Monte Carlo, and normalising flows

Posted in Books, pictures, Statistics, University life with tags Bayesian neural networks, Bernstein-von Mises theorem, CIF, computing cost, conferences, density approximation, dissertation, doubly intractable posterior, evidence, ICML 2019, ICML 2020, image analysis, International Conference on Machine Learning, L¹ convergence, logistic regression, nesting Monte Carlo, normalising flow, PhD, probabilistic programming, quarantine, SAME algorithm, scalable MCMC, thesis defence, University of Oxford, variational autoencoders, viva on June 16, 2020 by xi'an**O**ver a sunny if quarantined Sunday, I started reading the PhD dissertation of Rob Cornish, Oxford University, as I am the external member of his viva committee. Ending up in a highly pleasant afternoon discussing this thesis over a (remote) viva yesterday. (If bemoaning a lost opportunity to visit Oxford!) The introduction to the viva was most helpful and set the results within the different time and geographical zones of the Ph.D since Rob had to switch from one group of advisors in Engineering to another group in Statistics. Plus an encompassing prospective discussion, expressing pessimism at exact MCMC for complex models and looking forward further advances in probabilistic programming.

Made of three papers, the thesis includes this ICML 2019 [remember the era when there were conferences?!] paper on scalable Metropolis-Hastings, by Rob Cornish, Paul Vanetti, Alexandre Bouchard-Côté, Georges Deligiannidis, and Arnaud Doucet, which I commented last year. Which achieves a remarkable and paradoxical O(1/√n) cost per iteration, provided (global) lower bounds are found on the (local) Metropolis-Hastings acceptance probabilities since they allow for Poisson thinning à la Devroye (1986) and second order Taylor expansions constructed for all components of the target, with the third order derivatives providing bounds. However, the variability of the acceptance probability gets higher, which induces a longer but still manageable if the concentration of the posterior is in tune with the Bernstein von Mises asymptotics. I had not paid enough attention in my first read at the strong theoretical justification for the method, relying on the convergence of MAP estimates in well- and (some) mis-specified settings. Now, I would have liked to see the paper dealing with a more complex problem that logistic regression.

The second paper in the thesis is an ICML 2018 proceeding by Tom Rainforth, Robert Cornish, Hongseok Yang, Andrew Warrington, and Frank Wood, which considers Monte Carlo problems involving several *nested* expectations in a non-linear manner, meaning that (a) several levels of Monte Carlo approximations are required, with associated asymptotics, and (b) the resulting overall estimator is biased. This includes common doubly intractable posteriors, obviously, as well as (Bayesian) design and control problems. [And it has nothing to do with nested sampling.] The resolution chosen by the authors is strictly plug-in, in that they replace each level in the nesting with a Monte Carlo substitute and do not attempt to reduce the bias. Which means a wide range of solutions (other than the plug-in one) could have been investigated, including bootstrap maybe. For instance, Bayesian design is presented as an application of the approach, but since it relies on the log-evidence, there exist several versions for estimating (unbiasedly) this log-evidence. Similarly, the Forsythe-von Neumann technique applies to arbitrary transforms of a primary integral. The central discussion dwells on the optimal choice of the volume of simulations at each level, optimal in terms of asymptotic MSE. Or rather asymptotic bound on the MSE. The interesting result being that the outer expectation requires the square of the number of simulations for the other expectations. Which all need converge to infinity. A trick in finding an estimator for a polynomial transform reminded me of the SAME algorithm in that it duplicated the simulations as many times as the highest power of the polynomial. (The ‘Og briefly reported on this paper… four years ago.)

The third and last part of the thesis is a proposal [to appear in ICML 20] on relaxing bijectivity constraints in normalising flows with continuously index flows. (Or CIF. As Rob made a joke about this cleaning brand, let me add (?) to that joke by mentioning that looking at CIF and *bijections* is less dangerous in a Trump cum COVID era at CIF and *injections*!) With Anthony Caterini, George Deligiannidis and Arnaud Doucet as co-authors. I am much less familiar with this area and hence a wee bit puzzled at the purpose of removing what I understand to be an appealing side of normalising flows, namely to produce a manageable representation of density functions as a combination of bijective and differentiable functions of a baseline random vector, like a standard Normal vector. The argument made in the paper is that imposing this representation of the density imposes a constraint on the topology of its support since said support is homeomorphic to the support of the baseline random vector. While the supporting theoretical argument is a mathematical theorem that shows the Lipschitz bound on the transform should be infinity in the case the supports are topologically different, these arguments may be overly theoretical when faced with the practical implications of the replacement strategy. I somewhat miss its overall strength given that the whole point seems to be in approximating a density function, based on a finite sample.

## back to Ockham’s razor

Posted in Statistics with tags Bayesian model choice, candidate's formula, David MacKay, evidence, flexibility, frequentist inference, marginal likelihood, marginal likelihood identity, Ockham's razor, William of Ockham on July 31, 2019 by xi'an

“All in all, the Bayesian argument for selecting the MAP model as the single ‘best’ model is suggestive but not compelling.”

**L**ast month, Jonty Rougier and Carey Priebe arXived a paper on Ockham’s factor, with a generalisation of a prior distribution acting as a regulariser, R(θ). Calling on the late David MacKay to argue that the evidence involves the correct penalising factor although they acknowledge that his central argument is not absolutely convincing, being based on a first-order Laplace approximation to the posterior distribution and hence “dubious”. The current approach stems from the candidate’s formula that is already at the core of Sid Chib’s method. The log evidence then decomposes as the sum of the maximum log-likelihood minus the log of the posterior-to-prior ratio at the MAP estimator. Called the flexibility.

“Defining model complexity as flexibility unifies the Bayesian and Frequentist justifications for selecting a single model by maximizing the evidence.”

While they bring forward rational arguments to consider this as a measure model complexity, it remains at an informal level in that other functions of this ratio could be used as well. This is especially hard to accept by non-Bayesians in that it (seriously) depends on the choice of the prior distribution, as all transforms of the evidence would. I am thus skeptical about the reception of the argument by frequentists…

## Introductory overview lecture: the ABC of ABC [JSM19 #1]

Posted in Statistics with tags ABC, American Statistical Association, Approximate Bayesian computation, approximate Bayesian inference, causal inference, Colorado, Denver, evidence, forensic statistics, Joint Statistical Meeting, JSM 2019, lecture on July 28, 2019 by xi'an**H**ere are my slides [more or less] for the introductory overview lecture I am giving today at JSM 2019, 4:00-5:50, CC-Four Seasons I. There is obviously quite an overlap with earlier courses I gave on the topic, although I refrained here from mentioning any specific application (like population genetics) to focus on statistical and computational aspects.

Along with the other introductory overview lectures in this edition of JSM:

- Sunday 28, 2:00-3:50, CC-Four Seasons I: CSI at the JSM: Forensic Statistics and the Value of Scientific Evidence in Court by Hal Stern (University of California, Irvine)
- Monday 29, 8:30-10:20, CC-205: Assessing Procedures vs. Assessing Evidence by Michael Levine (University of Massachusetts, Amherst)
- Monday 29, 2:00_3:50, CC-205: Causal inference in modern statistics by Jennifer Hill (New York University)and Avi Feller (UC Berkeley)
- Tuesday 30, 8:30-10:20, CC-205: Modern Risk Analysis by Walter Piergorsch (University of Arizona) and David Banks (Duke University)

## dynamic nested sampling for stars

Posted in Books, pictures, Statistics, Travel with tags astrostatistics, Biometrika, black holes, cross validated, dynesty, effective sample size, emcee, ESS, evidence, Hamiltonian Monte Carlo, HMC, Multinest, nested sampling, NUTS, order statistics, prior distributions, slice sampling, The Astrophysical Journal Letters on April 12, 2019 by xi'an**I**n the sequel of earlier nested sampling packages, like MultiNest, Joshua Speagle has written a new package called dynesty that manages dynamic nested sampling, primarily intended for astronomical applications. Which is the field where nested sampling is the most popular. One of the first remarks in the paper is that nested sampling can be more easily implemented by using a Uniform reparameterisation of the prior, that is, a reparameterisation that turns the prior into a Uniform over the unit hypercube. Which means *in fine* that the prior distribution can be generated from a fixed vector of uniforms and known transforms. Maybe not such an issue given that this is *the prior* after all. The author considers this makes sampling under the likelihood constraint a much simpler problem but it all depends in the end on the concentration of the likelihood within the unit hypercube. And on the ability to reach the higher likelihood slices. I did not see any special trick when looking at the documentation, but reflected on the fundamental connection between nested sampling and this ability. As in the original proposal by John Skilling (2006), the slice volumes are “estimated” by simulated Beta order statistics, with no connection with the actual sequence of simulation or the problem at hand. We did point out our incomprehension for such a scheme in our Biometrika paper with Nicolas Chopin. As in earlier versions, the algorithm attempts at visualising the slices by different bounding techniques, before proceeding to explore the bounded regions by several exploration algorithms, including HMC.

“As with any sampling method, we strongly advocate that Nested Sampling should not be viewed as being strictly“better” or “worse” than MCMC, but rather as a tool that can be more or less useful in certain problems. There is no “One True Method to Rule Them All”, even though it can be tempting to look for one.”

When introducing the dynamic version, the author lists three drawbacks for the static (original) version. One is the reliance on this transform of a Uniform vector over an hypercube. Another one is that the overall runtime is highly sensitive to the choice the prior. (If simulating from the prior rather than an importance function, as suggested in our paper.) A third one is the issue that nested sampling is impervious to the final goal, evidence approximation versus posterior simulation, i.e., uses a constant rate of prior integration. The dynamic version simply modifies the number of point simulated in each slice. According to the (relative) increase in evidence provided by the current slice, estimated through iterations. This makes nested sampling a sort of inversted Wang-Landau since it sharpens the difference between slices. (The dynamic aspects for estimating the volumes of the slices and the stopping rule may hinder convergence in unclear ways, which is not discussed by the paper.) Among the many examples produced in the paper, a 200 dimension Normal target, which is an interesting object for posterior simulation in that most of the posterior mass rests on a ring away from the maximum of the likelihood. But does not seem to merit a mention in the discussion. Another example of heterogeneous regression favourably compares dynesty with MCMC in terms of ESS (but fails to include an HMC version).

*[Breaking News: Although I wrote this post before the exciting first image of the black hole in M87 was made public and hence before I was aware of it, the associated AJL paper points out relying on dynesty for comparing several physical models of the phenomenon by nested sampling.]*