Archive for evidence

back to Ockham’s razor

Posted in Statistics with tags , , , , , , , , , on July 31, 2019 by xi'an

“All in all, the Bayesian argument for selecting the MAP model as the single ‘best’ model is suggestive but not compelling.”

Last month, Jonty Rougier and Carey Priebe arXived a paper on Ockham’s factor, with a generalisation of a prior distribution acting as a regulariser, R(θ). Calling on the late David MacKay to argue that the evidence involves the correct penalising factor although they acknowledge that his central argument is not absolutely convincing, being based on a first-order Laplace approximation to the posterior distribution and hence “dubious”. The current approach stems from the candidate’s formula that is already at the core of Sid Chib’s method. The log evidence then decomposes as the sum of the maximum log-likelihood minus the log of the posterior-to-prior ratio at the MAP estimator. Called the flexibility.

“Defining model complexity as flexibility unifies the Bayesian and Frequentist justifications for selecting a single model by maximizing the evidence.”

While they bring forward rational arguments to consider this as a measure model complexity, it remains at an informal level in that other functions of this ratio could be used as well. This is especially hard to accept by non-Bayesians in that it (seriously) depends on the choice of the prior distribution, as all transforms of the evidence would. I am thus skeptical about the reception of the argument by frequentists…

Introductory overview lecture: the ABC of ABC [JSM19 #1]

Posted in Statistics with tags , , , , , , , , , , , on July 28, 2019 by xi'an

Here are my slides [more or less] for the introductory overview lecture I am giving today at JSM 2019, 4:00-5:50, CC-Four Seasons I. There is obviously quite an overlap with earlier courses I gave on the topic, although I refrained here from mentioning any specific application (like population genetics) to focus on statistical and computational aspects.

Along with the other introductory overview lectures in this edition of JSM:

dynamic nested sampling for stars

Posted in Books, pictures, Statistics, Travel with tags , , , , , , , , , , , , , , , , , on April 12, 2019 by xi'an

In the sequel of earlier nested sampling packages, like MultiNest, Joshua Speagle has written a new package called dynesty that manages dynamic nested sampling, primarily intended for astronomical applications. Which is the field where nested sampling is the most popular. One of the first remarks in the paper is that nested sampling can be more easily implemented by using a Uniform reparameterisation of the prior, that is, a reparameterisation that turns the prior into a Uniform over the unit hypercube. Which means in fine that the prior distribution can be generated from a fixed vector of uniforms and known transforms. Maybe not such an issue given that this is the prior after all.  The author considers this makes sampling under the likelihood constraint a much simpler problem but it all depends in the end on the concentration of the likelihood within the unit hypercube. And on the ability to reach the higher likelihood slices. I did not see any special trick when looking at the documentation, but reflected on the fundamental connection between nested sampling and this ability. As in the original proposal by John Skilling (2006), the slice volumes are “estimated” by simulated Beta order statistics, with no connection with the actual sequence of simulation or the problem at hand. We did point out our incomprehension for such a scheme in our Biometrika paper with Nicolas Chopin. As in earlier versions, the algorithm attempts at visualising the slices by different bounding techniques, before proceeding to explore the bounded regions by several exploration algorithms, including HMC.

“As with any sampling method, we strongly advocate that Nested Sampling should not be viewed as being strictly“better” or “worse” than MCMC, but rather as a tool that can be more or less useful in certain problems. There is no “One True Method to Rule Them All”, even though it can be tempting to look for one.”

When introducing the dynamic version, the author lists three drawbacks for the static (original) version. One is the reliance on this transform of a Uniform vector over an hypercube. Another one is that the overall runtime is highly sensitive to the choice the prior. (If simulating from the prior rather than an importance function, as suggested in our paper.) A third one is the issue that nested sampling is impervious to the final goal, evidence approximation versus posterior simulation, i.e., uses a constant rate of prior integration. The dynamic version simply modifies the number of point simulated in each slice. According to the (relative) increase in evidence provided by the current slice, estimated through iterations. This makes nested sampling a sort of inversted Wang-Landau since it sharpens the difference between slices. (The dynamic aspects for estimating the volumes of the slices and the stopping rule may hinder convergence in unclear ways, which is not discussed by the paper.) Among the many examples produced in the paper, a 200 dimension Normal target, which is an interesting object for posterior simulation in that most of the posterior mass rests on a ring away from the maximum of the likelihood. But does not seem to merit a mention in the discussion. Another example of heterogeneous regression favourably compares dynesty with MCMC in terms of ESS (but fails to include an HMC version).

[Breaking News: Although I wrote this post before the exciting first image of the black hole in M87 was made public and hence before I was aware of it, the associated AJL paper points out relying on dynesty for comparing several physical models of the phenomenon by nested sampling.]

 

let the evidence speak [book review]

Posted in Books, Kids, Statistics with tags , , , , , , , , , , on December 17, 2018 by xi'an

This book by Alan Jessop, professor at the Durham University Business School,  aims at presenting Bayesian ideas and methods towards decision making “without formula because they are not necessary; the ability to add and multiply is all that is needed.” The trick is in using a Bayes grid, in other words a two by two table. (There are a few formulas that survived the slaughter, see e.g. on p. 91 the formula for the entropy. Contained in the chapter on information that I find definitely unclear.) When leaving the 2×2 world, things become more complicated and the construction of a prior belief as a probability density gets heroic without the availability of maths formulas. The first part of the paper is about Likelihood, albeit not the likelihood function, despite having the general rule that (p.73)

belief is proportional to base rate x likelihood

which is the book‘s version of Bayes’ (base?!) theorem. It then goes on to discuss the less structure nature of prior (or prior beliefs) against likelihood by describing Tony O’Hagan’s way of scaling experts’ beliefs in terms of a Beta distribution. And mentioning Jaynes’ maximum entropy prior without a single formula. What is hard to fathom from the text is how can one derive the likelihood outside surveys. (Using the illustration of 1963 Oswald’s murder by Ruby in the likelihood chapter does not particularly help!) A bit of nitpicking at this stage: the sentence

“The ancient Greeks, and before them the Chinese and the Aztecs…”

is historically incorrect since, while the Chinese empire dates back before the Greek dark ages, the Aztecs only rule Mexico from the 14th century (AD) until the Spaniard invasion. While most of the book sticks with unidimensional parameters, it also discusses more complex structures, for which it relies on Monte Carlo, although the description is rather cryptic (use your spreadsheet!, p.133). The book at this stage turns into a more story-telling mode, by considering for instance the Federalist papers analysis by Mosteller and Wallace. The reader can only follow the process of assessing a document authorship for a single word, as multidimensional cases (for either data or parameters) are out of reach. The same comment applies to the ecology, archeology, and psychology chapters that follow. The intermediary chapter on the “grossly misleading” [Court wording] of the statistical evidence in the Sally Clark prosecution is more accessible in that (again) it relies on a single number. Returning to the ban of Bayes rule in British courts:

In the light of the strong criticism by this court in the 1990s of using Bayes theorem before the jury in cases where there was no reliable statistical evidence, the practice of using a Bayesian approach and likelihood ratios to formulate opinions placed before a jury without that process being disclosed and debated in court is contrary to principles of open justice.

the discussion found in the book is quite moderate and inclusive, in that a Bayesian analysis helps in gathering evidence about a case, but may be misunderstood or misused at the [non-Bayesian] decision level.

In conclusion, Let the Evidence Speak is an interesting introduction to Bayesian thinking, through a simplifying device, the Bayes grid, which seems to come from management, with a large number of examples, if not necessarily all realistic and some side-stories. I doubt this exposure can produce expert practitioners, but it makes for an worthwhile awakening for someone “likely to have read this book because [one] had heard of Bayes but were uncertain what is was” (p.222). With commendable caution and warnings along the way.

unrejected null [xkcd]

Posted in Statistics with tags , , , , , on July 18, 2018 by xi'an

new estimators of evidence

Posted in Books, Statistics with tags , , , , , , , , , , , , on June 19, 2018 by xi'an

In an incredible accumulation of coincidences, I came across yet another paper about evidence and the harmonic mean challenge, by Yu-Bo Wang, Ming-Hui Chen [same as in Chen, Shao, Ibrahim], Lynn Kuo, and Paul O. Lewis this time, published in Bayesian Analysis. (Disclaimer: I was not involved in the reviews of any of these papers!)  Authors who arelocated in Storrs, Connecticut, in geographic and thematic connection with the original Gelfand and Dey (1994) paper! (Private joke about the Old Man of Storr in above picture!)

“The working parameter space is essentially the constrained support considered by Robert and Wraith (2009) and Marin and Robert (2010).”

The central idea is to use a more general function than our HPD restricted prior but still with a known integral. Not in the sense of control variates, though. The function of choice is a weighted sum of indicators of terms of a finite partition, which implies a compact parameter set Ω. Or a form of HPD region, although it is unclear when the volume can be derived. While the consistency of the estimator of the inverse normalising constant [based on an MCMC sample] is unsurprising, the more advanced part of the paper is about finding the optimal sequence of weights, as in control variates. But it is also unsurprising in that the weights are proportional to the inverses of the inverse posteriors over the sets in the partition. Since these are hard to derive in practice, the authors come up with a fairly interesting alternative, which is to take the value of the posterior at an arbitrary point of the relevant set.

The paper also contains an extension replacing the weights with functions that are integrable and with known integrals. Which is hard for most choices, even though it contains the regular harmonic mean estimator as a special case. And should also suffer from the curse of dimension when the constraint to keep the target almost constant is implemented (as in Figure 1).

The method, when properly calibrated, does much better than harmonic mean (not a surprise) and than Petris and Tardella (2007) alternative, but no other technique, on toy problems like Normal, Normal mixture, and probit regression with three covariates (no Pima Indians this time!). As an aside I find it hard to understand how the regular harmonic mean estimator takes longer than this more advanced version, which should require more calibration. But I find it hard to see a general application of the principle, because the partition needs to be chosen in terms of the target. Embedded balls cannot work for every possible problem, even with ex-post standardisation.

 

unbiased consistent nested sampling via sequential Monte Carlo [a reply]

Posted in pictures, Statistics, Travel with tags , , , , , , , , on June 13, 2018 by xi'an

Rob Salomone sent me the following reply on my comments of yesterday about their recently arXived paper.

Our main goal in the paper was to show that Nested Sampling (when interpreted a certain way) is really just a member of a larger class of SMC algorithms, and exploring the consequences of that. We should point out that the section regarding calibration applies generally to SMC samplers, and hope that people give those techniques a try regardless of their chosen SMC approach.
Regarding your question about “whether or not it makes more sense to get completely SMC and forego any nested sampling flavour!”, this is an interesting point. After all, if Nested Sampling is just a special form of SMC, why not just use more standard SMC approaches? It seems that the Nested Sampling’s main advantage is its ability to cope with problems that have “phase transition’’ like behaviour, and thus is robust to a wider range of difficult problems than annealing approaches. Nevertheless, we hope this way of looking at NS (and showing that there may be variations of SMC with certain advantages) leads to improved NS and SMC methods down the line.  
Regarding your post, I should clarify a point regarding unbiasedness. The largest likelihood bound is actually set to infinity. Thus, for the fixed version of NS—SMC, one has an unbiased estimator of the “final” band. Choosing a final band prematurely will of course result in very high variance. However, the estimator is unbiased. For example, consider NS—SMC with only one strata. Then, the method reduces to simply using the prior as an importance sampling distribution for the posterior (unbiased, but often high variance).
Comments related to two specific parts of your post are below (your comments in italicised bold):
“Which never occurred as the number one difficulty there, as the simplest implementation runs a Markov chain from the last removed entry, independently from the remaining entries. Even stationarity is not an issue since I believe that the first occurrence within the level set is distributed from the constrained prior.”
This is an interesting point that we had not considered! In practice, and in many papers that apply Nested Sampling with MCMC, the common approach is to start the MCMC at one of the randomly selected “live points”, so the discussion related to independence was in regard to these common implementations.
Regarding starting the chain from outside of the level set. This is likely not done in practice as it introduces an additional difficulty of needing to propose a sample inside the required region (Metropolis–Hastings will have non—zero probability of returning a sample that is still outside the constrained region for any fixed number of iterations). Forcing the continuation of MCMC until a valid point is proposed I believe will be a subtle violation of detailed balance. Of course, the bias of such a modification may be small in practice, but it is an additional awkwardness introduced by the requirement of sample independence!
“And then, in a twist that is not clearly explained in the paper, the focus moves to an improved nested sampler that moves one likelihood value at a time, with a particle step replacing a single  particle. (Things get complicated when several particles may take the very same likelihood value, but randomisation helps.) At this stage the algorithm is quite similar to the original nested sampler. Except for the unbiased estimation of the constants, the  final constant, and the replacement of exponential weights exp(-t/N) by powers of (N-1/N)”
Thanks for pointing out that this isn’t clear, we will try to do better in the next revision! The goal of this part of the paper wasn’t necessarily to propose a new version of nested sampling. Our focus here was to demonstrate that NS–SMC is not simply the Nested Sampling idea with an SMC twist, but that the original NS algorithm with MCMC (and restarting the MCMC sampling at one of the “live points’” as people do in practice) actually is a special case of SMC (with the weights replaced with a suboptimal choice).
The most curious thing is that, as you note, the estimates of remaining prior mass in the SMC context come out as powers of (N-1)/N and not exp(-t/N). In the paper by Walter (2017), he shows that the former choice is actually superior in terms of bias and variance. It was a nice touch that the superior choice of weights came out naturally in the SMC interpretation! 
That said, as the fixed version of NS-SMC is the one with the unbiasedness and consistency properties, this was the version we used in the main statistical examples.