Archive for fMRI

sex, lies, & brain scans [not a book review]

Posted in Statistics with tags , , , , , , , on February 11, 2017 by xi'an

“Sahakian and Gottwald discuss the problem of “reverse inference” regrettably late in the book.”

In the book review section of Nature [Jan 12, 2017 issue], there was a long coverage of the book sex. lies, & brain scans: How fMRI Reveals What Really Goes on in our Minds, by Barbara J. Sahakian and Julia Gottwald. While I have not read the book (which is not even yet out on amazon), I found some mentions of associating brain patterns with criminal behaviour quite puzzling: “neuroimaging will probably be an imperfect predictor of criminal behaviour”. Actually, much more than puzzling, both frightening with its Minority Report prospects [once again quoted as a movie rather than Philip K. Dick’s novel!], and bordering the irrational, for associating breaking rules with a brain pattern. Of course this is just an impression from reading a book review and the attempts may be restricted to psychological diseases rather than attempt at social engineering and brain policing, but if this is the case, as suggested by the review, it is downright scary!

contemporary issues in hypothesis testing

Posted in Statistics with tags , , , , , , , , , , , , , , , , , , on September 26, 2016 by xi'an

hipocontemptThis week [at Warwick], among other things, I attended the CRiSM workshop on hypothesis testing, giving the same talk as at ISBA last June. There was a most interesting and unusual talk by Nick Chater (from Warwick) about the psychological aspects of hypothesis testing, namely about the unnatural features of an hypothesis in everyday life, i.e., how far this formalism stands from human psychological functioning.  Or what we know about it. And then my Warwick colleague Tom Nichols explained how his recent work on permutation tests for fMRIs, published in PNAS, testing hypotheses on what should be null if real data and getting a high rate of false positives, got the medical imaging community all up in arms due to over-simplified reports in the media questioning the validity of 15 years of research on fMRI and the related 40,000 papers! For instance, some of the headings questioned the entire research in the area. Or transformed a software bug missing the boundary effects into a major flaw.  (See this podcast on Not So Standard Deviations for a thoughtful discussion on the issue.) One conclusion of this story is to be wary of assertions when submitting a hot story to journals with a substantial non-scientific readership! The afternoon talks were equally exciting, with Andrew explaining to us live from New York why he hates hypothesis testing and prefers model building. With the birthday model as an example. And David Draper gave an encompassing talk about the distinctions between inference and decision, proposing a Jaynes information criterion and illustrating it on Mendel‘s historical [and massaged!] pea dataset. The next morning, Jim Berger gave an overview on the frequentist properties of the Bayes factor, with in particular a novel [to me] upper bound on the Bayes factor associated with a p-value (Sellke, Bayarri and Berger, 2001)

B¹⁰(p) ≤ 1/-e p log p

with the specificity that B¹⁰(p) is not testing the original hypothesis [problem] but a substitute where the null is the hypothesis that p is uniformly distributed, versus a non-parametric alternative that p is more concentrated near zero. This reminded me of our PNAS paper on the impact of summary statistics upon Bayes factors. And of some forgotten reference studying Bayesian inference based solely on the p-value… It is too bad I had to rush back to Paris, as this made me miss the last talks of this fantastic workshop centred on maybe the most important aspect of statistics!

Advances in scalable Bayesian computation [day #2]

Posted in Books, Mountains, pictures, R, Statistics, University life with tags , , , , , , , , , , , on March 5, 2014 by xi'an

polyptych painting within the TransCanada Pipeline Pavilion, Banff Centre, Banff, March 21, 2012And here is the second day of our workshop Advances in Scalable Bayesian Computation gone! This time, it sounded like the “main” theme was about brains… In fact, Simon Barthelmé‘s research originated from neurosciences, while Dawn Woodard dissected a brain (via MRI) during her talk! (Note that the BIRS website currently posts Simon’s video as being Dan Simpson’s talk, the late change in schedule being due to Dan most unfortunately losing his passport during a plane transfer and most unfortunately being prevented from attending…) I found Simon’s talk quite inspiring, with this Tibshirani et al.’s trick of using logistic regression to estimate densities as a classification problem central to the method and suggesting a completely different vista for handling normalising constants… Then Raazesh Sainudiin gave a detailed explanation and validation of his approach to density estimation by multidimensional pavings/histograms, with a tree representation allowing for fast merging of different estimators. Raaz had given a preliminary version of the talk at CREST last Fall, which helped with focussing on the statistical aspects of the method. Chris Strickland then exposed an image analysis of flooded Northern Queensland landscapes, using a spatio-temporal model with changepoints and about 18,000 parameters. still managing to get an efficiency of O(np) thanks to two tricks. Then it was time for the group photograph outside in a balmy -18⁰ and an open research time that was quite profitable.

In the afternoon sessions, Paul Fearnhead presented an auxiliary variable approach to particle Gibbs, which again opened new possibilities for handling state-space models, but also reminding me of Xiao-Li Meng’s reparameterisation devices. And making me wonder (out loud) whether or not the SMC algorithm was that essential in a static setting, since the sequence could be explored in any possible order for a fixed time horizon. Then Emily Fox gave a 2-for-1 talk, mostly focussing on the first talk, where she introduced a new technique for approximating the gradient in Hamiltonian (or Hockey!) Monte Carlo, using second order Langevin. She did not have much time for the second talk, which intersected with the one she gave at BNP’ski in Chamonix, but focussed on a notion of sandwiched slice sampling where the target density only needs bounds that can get improved if needed. A cool trick! And the talks ended with Dawn Woodard‘s analysis of time varying 3-D brain images towards lesion detection, through an efficient estimation of a spatial mixture of normals.

A heap of PhD studentships at UCL

Posted in R, Statistics, University life with tags , , , , , , , , on June 22, 2011 by xi'an

Mark Girolami sent me this announcement for six PhD studentships in Statistical Methodology and Its Application at University College London (UCL) that are great opportunities for anyone interested in computational statistics!

The studentships are attached to the Department of Statistical Science at University College London, and a subset of them are UCL Impact awards. Impact awards support collaborative studentship projects with organisations such as charities, companies, government institutions and social enterprises. The impact awards are joint with Lloyds bank, Xerox Research Centre Europe, and NCR Labs, respectively. Continue reading

%d bloggers like this: