Archive for Fourier transform

ABC with kernelised regression

Posted in Mountains, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , on February 22, 2017 by xi'an

sunset from the Banff Centre, Banff, Canada, March 21, 2012The exact title of the paper by Jovana Metrovic, Dino Sejdinovic, and Yee Whye Teh is DR-ABC: Approximate Bayesian Computation with Kernel-Based Distribution Regression. It appeared last year in the proceedings of ICML.  The idea is to build ABC summaries by way of reproducing kernel Hilbert spaces (RKHS). Regressing such embeddings to the “optimal” choice of summary statistics by kernel ridge regression. With a possibility to derive summary statistics for quantities of interest rather than for the entire parameter vector. The use of RKHS reminds me of Arthur Gretton’s approach to ABC, although I see no mention made of that work in the current paper.

In the RKHS pseudo-linear formulation, the prediction of a parameter value given a sample attached to this value looks like a ridge estimator in classical linear estimation. (I thus wonder at why one would stop at the ridge stage instead of getting the full Bayes treatment!) Things get a bit more involved in the case of parameters (and observations) of interest, as the modelling requires two RKHS, because of the conditioning on the nuisance observations. Or rather three RHKS. Since those involve a maximum mean discrepancy between probability distributions, which define in turn a sort of intrinsic norm, I also wonder at a Wasserstein version of this approach.

What I find hard to understand in the paper is how a large-dimension large-size sample can be managed by such methods with no visible loss of information and no explosion of the computing budget. The authors mention Fourier features, which never rings a bell for me, but I wonder how this operates in a general setting, i.e., outside the iid case. The examples do not seem to go into enough details for me to understand how this massive dimension reduction operates (and they remain at a moderate level in terms of numbers of parameters). I was hoping Jovana Mitrovic could present her work here at the 17w5025 workshop but she sadly could not make it to Banff for lack of funding!

Gauss to Laplace transmutation!

Posted in Books, Kids, Statistics, University life with tags , , , , on October 14, 2015 by xi'an

When browsing X validated the other day [translate by procrastinating!], I came upon the strange property that the marginal distribution of a zero mean normal variate with exponential variance is a Laplace distribution. I first thought there was a mistake since we usually take an inverse Gamma on the variance parameter, not a Gamma. But then the marginal is a t distribution. The result is curious and can be expressed in a variety of ways:

– the product of a χ21 and of a χ2 is a χ22;
– the determinant of a 2×2 normal matrix is a Laplace variate;
– a difference of exponentials is Laplace…

The OP was asking for a direct proof of the result and I eventually sorted it out by a series of changes of variables, although there exists a much more elegant and general proof by Mike West, then at the University of Warwick, based on characteristic functions (or Fourier transforms). It reminded me that continuous, unimodal [at zero] and symmetric densities were necessary scale mixtures [a wee misnomer] of Gaussians. Mike proves in this paper that exponential power densities [including both the Normal and the Laplace cases] correspond to the variances having an inverse positive stable distribution with half the power. And this is a straightforward consequence of the exponential power density being proportional to the Fourier transform of a stable distribution and of a Fubini inversion. (Incidentally, the processing times of Biometrika were not that impressive at the time, with a 2-page paper submitted in Dec. 1984 published in Sept. 1987!)

This is a very nice and general derivation, but I still miss the intuition as to why it happens that way. But then, I know nothing, and even less about products of random variates!

MCqMC 2014 [day #4]

Posted in pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , on April 11, 2014 by xi'an


I hesitated in changing the above title for “MCqMSmaug” as the plenary talk I attended this morning was given by Wenzel Jakob, who uses Markov chain Monte Carlo methods in image rendering and light simulation. The talk was low-tech’, with plenty of pictures and animations (incl. excerpts from recent blockbusters!), but it stressed how much proper rending relies on powerful MCMC techniques. One point particularly attracted my attention, namely the notion of manifold exploration as it seemed related to my zero measure recent post. (A related video is available on Jakob’s webpage.) You may then wonder where the connection with Smaug could be found: Wenzel Jakob is listed in the credits of both Hobbit movies for his contributions to the visual effects! (Hey, MCMC made Smaug [visual effects the way they are], a cool argument for selling your next MCMC course! I will for sure include a picture of Smaug in my next R class presentation…) The next sessions of the morning opposed Sobol’s memorial to more technical light rendering and I chose Sobol, esp. because I had missed Art Owen’s tutorial on Sunday, as he gave a short presentation on using Sobol’s criteria to identify variables contributing the most to the variability or extreme values of a function, an extreme value kind of ANOVA, most interesting if far from my simulation area… The afternoon sessions saw MCMC talks by Luke Bornn and Scott Schmidler, both having connection with the Wang-Landau algorithm. Actually, Scott’s talk was the one generating the most animated discussion among all those I attended in MCqMC! (To the point of the chairman getting rather rudely making faces…)