Archive for g-and-k distributions

nonparametric ABC [seminar]

Posted in pictures, Statistics, University life with tags , , , , , , , , , , , , , on June 3, 2022 by xi'an

Puzzle: How do you run ABC when you mistrust the model?! We somewhat considered this question in our misspecified ABC paper with David and Judith. An AISTATS 2022 paper by Harita Dellaporta (Warwick), Jeremias KnoblauchTheodoros Damoulas (Warwick), and François-Xavier Briol (formerly Warwick) is addressing this same question and Harita presented the paper at the One World ABC webinar yesterday.

It is inspired from Lyddon, Walker & Holmes (2018), who place a nonparametric prior on the generating model, in top of the assumed parametric model (with an intractable likelihood). This induces a push-forward prior on the pseudo-true parameter, that is, the value that brings the parametric family the closest possible to the true distribution of the data. Here defined as a minimum distance parameter, the maximum mean discrepancy (MMD). Choosing RKHS framework allows for a practical implementation, resorting to simulations for posterior realisations from a Dirichlet posterior and from the parametric model, and stochastic gradient for computing the pseudo-true parameter, which may prove somewhat heavy in terms of computing cost.

The paper also containts a consistency result in an ε-contaminated setting (contamination of the assumed parametric family). Comparisons like the above with a fully parametric Wasserstein-ABC approach show that this alter resists better misspecification, as could be expected since the later is not constructed for that purpose.

Next talk is on 23 June by Cosma Shalizi.

variational approximation to empirical likelihood ABC

Posted in Statistics with tags , , , , , , , , , , , , , , , , , , on October 1, 2021 by xi'an

Sanjay Chaudhuri and his colleagues from Singapore arXived last year a paper on a novel version of empirical likelihood ABC that I hadn’t yet found time to read. This proposal connects with our own, published with Kerrie Mengersen and Pierre Pudlo in 2013 in PNAS. It is presented as an attempt at approximating the posterior distribution based on a vector of (summary) statistics, the variational approximation (or information projection) appearing in the construction of the sampling distribution of the observed summary. (Along with a weird eyed-g symbol! I checked inside the original LaTeX file and it happens to be a mathbbmtt g, that is, the typewriter version of a blackboard computer modern g…) Which writes as an entropic correction of the true posterior distribution (in Theorem 1).

“First, the true log-joint density of the observed summary, the summaries of the i.i.d. replicates and the parameter have to be estimated. Second, we need to estimate the expectation of the above log-joint density with respect to the distribution of the data generating process. Finally, the differential entropy of the data generating density needs to be estimated from the m replicates…”

The density of the observed summary is estimated by empirical likelihood, but I do not understand the reasoning behind the moment condition used in this empirical likelihood. Indeed the moment made of the difference between the observed summaries and the observed ones is zero iff the true value of the parameter is used in the simulation. I also fail to understand the connection with our SAME procedure (Doucet, Godsill & X, 2002), in that the empirical likelihood is based on a sample made of pairs (observed,generated) where the observed part is repeated m times, indeed, but not with the intent of approximating a marginal likelihood estimator… The notion of using the actual data instead of the true expectation (i.e. as a unbiased estimator) at the true parameter value is appealing as it avoids specifying the exact (or analytical) value of this expectation (as in our approach), but I am missing the justification for the extension to any parameter value. Unless one uses an ancillary statistic, which does not sound pertinent… The differential entropy is estimated by a Kozachenko-Leonenko estimator implying k-nearest neighbours.

“The proposed empirical likelihood estimates weights by matching the moments of g(X¹), , g(X) with that of
g(X), without requiring a direct relationship with the parameter. (…) the constraints used in the construction of the empirical likelihood are based on the identity in (7), which can only be satisfied when θ = θ⁰. “

Although I am feeling like missing one argument, the later part of the paper seems to comfort my impression, as quoted above. Meaning that the approximation will fare well only in the vicinity of the true parameter. Which makes it untrustworthy for model choice purposes, I believe. (The paper uses the g-and-k benchmark without exploiting Pierre Jacob’s package that allows for exact MCMC implementation.)

unbiased product of expectations

Posted in Books, Statistics, University life with tags , , , , , , , , on August 5, 2019 by xi'an

m_biomet_106_2coverWhile I was not involved in any way, or even aware of this research, Anthony Lee, Simone Tiberi, and Giacomo Zanella have an incoming paper in Biometrika, and which was partly written while all three authors were at the University of Warwick. The purpose is to design an efficient manner to approximate the product of n unidimensional expectations (or integrals) all computed against the same reference density. Which is not a real constraint. A neat remark that motivates the method in the paper is that an improved estimator can be connected with the permanent of the n x N matrix A made of the values of the n functions computed at N different simulations from the reference density. And involves N!/ (N-n)! terms rather than N to the power n. Since it is NP-hard to compute, a manageable alternative uses random draws from constrained permutations that are reasonably easy to simulate. Especially since, given that the estimator recycles most of the particles, it requires a much smaller version of N. Essentially N=O(n) with this scenario, instead of O(n²) with the basic Monte Carlo solution, towards a similar variance.

This framework offers many applications in latent variable models, including pseudo-marginal MCMC, of course, but also for ABC since the ABC posterior based on getting each simulated observation close enough from the corresponding actual observation fits this pattern (albeit the dependence on the chosen ordering of the data is an issue that can make the example somewhat artificial).

a pen for ABC

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , on February 13, 2019 by xi'an

Among the flury of papers arXived around the ICML 2019 deadline, I read on my way back from Oxford a paper by Wiqvist et al. on learning summary statistics for ABC by neural nets. Pointing out at another recent paper by Jiang et al. (2017, Statistica Sinica) which constructed a neural network for predicting each component of the parameter vector based on the input (raw) data, as an automated non-parametric regression of sorts. Creel (2017) does the same but with summary statistics. The current paper builds up from Jiang et al. (2017), by adding the constraint that exchangeability and partial exchangeability features should be reflected by the neural net prediction function. With applications to Markovian models. Due to a factorisation theorem for d-block invariant models, the authors impose partial exchangeability for order d Markov models by combining two neural networks that end up satisfying this factorisation. The concept is exemplified for one-dimension g-and-k distributions, alpha-stable distributions, both of which are made of independent observations, and the AR(2) and MA(2) models, as in our 2012 ABC survey paper. Since the later is not Markovian the authors experiment with different orders and reach the conclusion that an order of 10 is most appropriate, although this may be impacted by being a ble to handle the true likelihood.

approximate likelihood perspective on ABC

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , on December 20, 2018 by xi'an

George Karabatsos and Fabrizio Leisen have recently published in Statistics Surveys a fairly complete survey on ABC methods [which earlier arXival I had missed]. Listing within an extensive bibliography of 20 pages some twenty-plus earlier reviews on ABC (with further ones in applied domains)!

“(…) any ABC method (algorithm) can be categorized as either (1) rejection-, (2) kernel-, and (3) coupled ABC; and (4) synthetic-, (5) empirical- and (6) bootstrap-likelihood methods; and can be combined with classical MC or VI algorithms [and] all 22 reviews of ABC methods have covered rejection and kernel ABC methods, but only three covered synthetic likelihood, one reviewed the empirical likelihood, and none have reviewed coupled ABC and bootstrap likelihood methods.”

The motivation for using approximate likelihood methods is provided by the examples of g-and-k distributions, although the likelihood can be efficiently derived by numerical means, as shown by Pierre Jacob‘s winference package, of mixed effect linear models, although a completion by the mixed effects themselves is available for Gibbs sampling as in Zeger and Karim (1991), and of the hidden Potts model, which we covered by pre-processing in our 2015 paper with Matt Moores, Chris Drovandi, Kerrie Mengersen. The paper produces a general representation of the approximate likelihood that covers the algorithms listed above as through the table below (where t(.) denotes the summary statistic):

The table looks a wee bit challenging simply because the review includes the synthetic likelihood approach of Wood (2010), which figured preeminently in the 2012 Read Paper discussion but opens the door to all kinds of approximations of the likelihood function, including variational Bayes and non-parametric versions. After a description of the above versions (including a rather ignored coupled version) and the special issue of ABC model choice,  the authors expand on the difficulties with running ABC, from multiple tuning issues, to the genuine curse of dimensionality in the parameter (with unnecessary remarks on low-dimension sufficient statistics since they are almost surely inexistent in most realistic settings), to the mis-specified case (on which we are currently working with David Frazier and Judith Rousseau). To conclude, an worthwhile update on ABC and on the side a funny typo from the reference list!

Li, W. and Fearnhead, P. (2018, in press). On the asymptotic efficiency
of approximate Bayesian computation estimators. Biometrika na na-na.

%d bloggers like this: