**V**eronicka Rockova (from Chicago Booth) gave a talk on this theme at the Oxford Stats seminar this afternoon. Starting with a survey of ABC, synthetic likelihoods, and pseudo-marginals, to motivate her approach via GANs, learning an approximation of the likelihood from the GAN discriminator. Her explanation for the GAN type estimate was crystal clear and made me wonder at the connection with Geyer’s 1994 logistic estimator of the likelihood (a form of discriminator with a fixed generator). She also expressed the ABC approximation hence created as the actual posterior times an exponential tilt. Which she proved is of order 1/n. And that a random variant of the algorithm (where the shift is averaged) is unbiased. Most interestingly requiring no calibration and no tolerance. Except indirectly when building the discriminator. And no summary statistic. Noteworthy tension between correct shape and correct location.

## Archive for GANs

## Metropolis-Hastings via classification

Posted in pictures, Statistics, Travel, University life with tags ABC, ABC consistency, Chicago, Chicago Booth School of Business, deep learning, discriminant analysis, GANs, logistic regression, seminar, summary statistics, synthetic likelihood, University of Oxford, webinar, winter running on February 23, 2021 by xi'an## your GAN is secretly an energy-based model

Posted in Books, Statistics, University life with tags accept-reject algorithm, Baltimore, conferences, Cornell University, discrimination, GANs, generative adversarial networks, Ithaca, JSM 1999, Langevin MCMC algorithm, MCMC, NeurIPS 2020, Wasserstein distance, wikipedia on January 5, 2021 by xi'an**A**s I was reading this NeurIPS 2020 paper by Che et al., and trying to make sense of it, I came across a citation to our paper Casella, Robert and Wells (2004) on a generalized accept-reject sampling scheme where the proposal changes at each simulation that sounds surprising if appreciated! But after checking this paper also appears as the first reference on the Wikipedia page for rejection sampling, which makes me wonder if many actually read it. (On the side, we mostly wrote this paper on a drive from Baltimore to Ithaca, after JSM 1999.)

“We provide more evidence that it is beneficial to sample from the energy-based model defined both by the generator and the discriminator instead of from the generator only.”

The paper seems to propose a post-processing of the generator output by a GAN, generating from the mixture of both generator and discriminator, via a (unscented) Langevin algorithm. The core idea is that, if p(.) is the true data generating process, g(.) the estimated generator and d(.) the discriminator, then

p(x) ≈ p⁰(x)∝g(x) exp(d(x))

(The approximation would be exact the discriminator optimal.) The authors work with the latent z’s, in the GAN meaning that generating pseudo-data x from g means taking a deterministic transform of z, x=G(z). When considering the above p⁰, a generation from p⁰ can be seen as accept-reject with acceptance probability proportional to exp[d{G(z)}]. (On the side, Lemma 1 is the standard validation for accept-reject sampling schemes.)

Reading this paper made me realised how much the field had evolved since my previous GAN related read. With directions like Metropolis-Hastings GANs and Wasserstein GANs. (And I noticed a “broader impact” section past the conclusion section about possible misuses with societal consequences, which is a new requirement for NeurIPS publications.)

## frontier of simulation-based inference

Posted in Books, Statistics, University life with tags ABC, Bayesian deep learning, classification, deep learning, GANs, kernel density estimator, National Academy of Science, neural network, neural networks and learning machines, PNAS, simulation-based inference, Statistics, summary statistics, Wasserstein distance on June 11, 2020 by xi'an

“This paper results from the Arthur M. Sackler Colloquium of the National Academy of Sciences, `The Science of Deep Learning,’ held March 13–14, 2019, at the National Academy of Sciences in Washington, DC.”

**A** paper by Kyle Cranmer, Johann Brehmer, and Gilles Louppe just appeared in PNAS on the frontier of simulation-based inference. Sounding more like a tribune than a research paper producing new input. Or at least like a review. Providing a quick introduction to simulators, inference, ABC. Stating the shortcomings of simulation-based inference as three-folded:

- costly, since required a large number of simulated samples
- loosing information through the use of insufficient summary statistics or poor non-parametric approximations of the sampling density.
- wasteful as requiring new computational efforts for new datasets, primarily for ABC as learning the likelihood function (as a function of both the parameter θ and the data x) is only done once.

And the difficulties increase with the dimension of the data. While the points made above are correct, I want to note that ideally ABC (and Bayesian inference as a whole) only depends on a single dimension observation, which is the likelihood value. Or more practically that it only depends on the distance from the observed data to the simulated data. (Possibly the Wasserstein distance between the cdfs.) And that, somewhat unrealistically, that ABC could store the reference table once for all. Point 3 can also be debated in that the effort of learning an approximation can only be amortized when exactly the same model is re-employed with new data, which is likely in industrial applications but less in scientific investigations, I would think. About point 2, the paper misses part of the ABC literature on selecting summary statistics, e.g., the culling afforded by random forests ABC, or the earlier use of the score function in Martin et al. (2019).

The paper then makes a case for using machine-, active-, and deep-learning advances to overcome those blocks. Recouping other recent publications and talks (like Dennis on One World ABC’minar!). Once again presenting machine-learning techniques such as normalizing flows as more efficient than traditional non-parametric estimators. Of which I remain unconvinced without deeper arguments [than the repeated mention of powerful machine-learning techniques] on the convergence rates of these estimators (rather than extolling the super-powers of neural nets).

“A classifier is trained using supervised learning to discriminate two sets of data, although in this case both sets come from the simulator and are generated for different parameter points θ⁰ and θ¹. The classifier output function can be converted into an approximation of the likelihood ratio between θ⁰ and θ¹ (…) learning the likelihood or posterior is an unsupervised learning problem, whereas estimating the likelihood ratio through a classifier is an example of supervised learning and often a simpler task.”

The above comment is highly connected to the approach set by Geyer in 1994 and expanded in Gutmann and Hyvärinen in 2012. Interestingly, at least from my narrow statistician viewpoint!, the discussion about using these different types of approximation to the likelihood and hence to the resulting Bayesian inference never engages into a quantification of the approximation or even broaches upon the potential for inconsistent inference unlocked by using fake likelihoods. While insisting on the information loss brought by using summary statistics.

“Can the outcome be trusted in the presence of imperfections such as limited sample size, insufficient network capacity, or inefficient optimization?”

Interestingly [the more because the paper is classified as statistics] the above shows that the statistical question is set instead in terms of numerical error(s). With proposals to address it ranging from (unrealistic) parametric bootstrap to some forms of GANs.

## mining gold [ABC in PNAS]

Posted in Books, Statistics with tags ABC, Charlie Geyer, EM algorithm, Galton Board, GANs, intractable likelihood, latent variable models, National Academy of Science, PNAS, quincunx, Rao-Blackwellisation, simulator model on March 13, 2020 by xi'an**J**ohann Brehmer and co-authors have just published a paper in PNAS entitled “Mining gold from implicit models to improve likelihood-free inference”. (Besides the pun about mining gold, the paper also involves techniques named RASCAL and SCANDAL, respectively! For *Ratio And SCore Approximate Likelihood ratio* and *SCore-Augmented Neural Density Approximates Likelihood*.) This setup is not ABC per se in that their simulator is used both to generate training data and construct a tractable surrogate model. Exploiting Geyer’s (1994) classification trick of expressing the likelihood ratio as the optimal classification ratio when facing two equal-size samples from one density and the other.

“For all these inference strategies, the augmented data is particularly powerful for enhancing the power of simulation-based inference for small changes in the parameter θ.”

Brehmer et al. argue that “the most important novel contribution that differentiates our work from the existing methods is the observation that additional information can be extracted from the simulator, and the development of loss functions that allow us to use this “augmented” data to more efficiently learn surrogates for the likelihood function.” Rather than starting from a statistical model, they also seem to use a scientific simulator made of multiple layers of latent variables **z**, where

x=F⁰(u⁰,z¹,θ), z¹=G¹(u¹,z²), z²=G¹(u²,z³), …

although they also call the marginal of x, p(x|θ), an (intractable) likelihood.

“The integral of the log is not the log of the integral!”

The central notion behind the improvement is a form of Rao-Blackwellisation, exploiting the simulated **z**‘s. Joint score functions and joint likelihood ratios are then available. Ignoring biases, the authors demonstrate that the closest approximation to the joint likelihood ratio and the joint score function that only depends on x is the actual likelihood ratio and the actual score function, respectively. Which sounds like an older EM result, except that the roles of estimate and target quantity are somehow inverted: one is approximating the marginal with the joint, while the marginal is the “best” approximation of the joint. But in the implementation of the method, an estimate of the (observed and intractable) likelihood ratio is indeed produced towards minimising an empirical loss based on two simulated samples. Learning this estimate ê(x) then allows one to use it for the actual data. It however requires fitting a new ê(x) for each pair of parameters. Providing as well an estimator of the likelihood p(x|θ). (Hence the SCANDAL!!!) A second type of approximation of the likelihood starts from the approximate value of the likelihood p(x|θ⁰) at a fixed value θ⁰ and expands it locally as an exponential family shift, with the score t(x|θ⁰) as sufficient statistic.

I find the paper definitely interesting even though it requires the representation of the (true) likelihood as a marginalisation over multiple layers of latent variables **z**. And does not provide an evaluation of the error involved in the process when the model is misspecified. As a minor supplementary appeal of the paper, the use of an asymmetric Galton quincunx to illustrate an intractable array of latent variables will certainly induce me to exploit it in projects and courses!

*[Disclaimer: I was not involved in the PNAS editorial process at any point!]*