**A**s I was preparing my (new) lectures for a PhD short course “at” Warwick (meaning on Teams!), I read a few surveys and other papers on all these acronyms. It included the massive Guttmann and Hyvärinen 2012 NCE JMLR paper, Goodfellow’s NIPS 2016 tutorial on GANs, and Kingma and Welling 2019 introduction to VAEs. Which I found a wee bit on the light side, maybe missing the fundamentals of the notion… As well as the pretty helpful 2019 survey on normalising flows by Papamakarios et al., although missing on the (statistical) density estimation side. And also a nice (2017) survey of GANs by Shakir Mohamed and Balaji Lakshminarayanan with a somewhat statistical spirit, even though convergence issues are not again not covered. But misspecification is there. And the many connections between ABC and GANs, if definitely missing on the uncertainty aspects. While Deep Learning by Goodfellow, Bengio and Courville adresses both the normalising constant (or partition function) and GANs, it was somehow not deep enough (!) to use for the course, offering only a few pages on NCE, VAEs and GANs. (And also missing on the statistical references addressing the issue, incl. [or excl.] Geyer, 1994.) Overall, the infinite variations offered on GANs leave me uncertain about their statistical relevance, as it is unclear how good the regularisation therein is for handling overfitting and consistent estimation. (And if I spot another decomposition of the Kullback-Leibler divergence, I may start crying…)

## Archive for generative adversarial networks

## NCE, VAEs, GANs & even ABC…

Posted in Statistics with tags ABC, Bayesian GANs, CDT, deep learning, energy based model, generative adversarial networks, noise contrasting estimation, normalising constant, normalising flow, partition function, PhD course, Teams, University of Warwick, variational autoencoders on May 14, 2021 by xi'an## training energy based models

Posted in Books, Statistics with tags Charles Stein, energy based model, GAN, generative adversarial networks, Hyvärinen score, maximum likelihood estimation, noise contrasting estimation, unbiased estimation on April 7, 2021 by xi'an**T**his recent arXival by Song and Kingma covers different computational approaches to semi-parametric estimation, but also exposes imho the chasm existing between statistical and machine learning perspectives on the problem.

“Energy-based models are much less restrictive in functional form: instead of specifying a normalized probability, they only specify the unnormalized negative log-probability (…) Since the energy function does not need to integrate to one, it can be parameterized with any nonlinear regression function.”

The above in the introduction appears first as a strange argument, since the mass one constraint is the least of the problems when addressing non-parametric density estimation. Problems like the convergence, the speed of convergence, the computational cost and the overall integrability of the estimator. It seems however that the restriction or lack thereof is to be understood as the ability to use much more elaborate forms of densities, which are then black-boxes whose components have little relevance… When using such mega-over-parameterised representations of densities, such as neural networks and normalising flows, a statistical assessment leads to highly challenging questions. But convergence (in the sample size) does not appear to be a concern for the paper. (Except for a citation of Hyvärinen on p.5.)

Using MLE in this context appears to be questionable, though, since the base parameter θ is not unlikely to remain identifiable. Computing the MLE is therefore a minor issue, in this regard, a resolution based on simulated gradients being well-chartered from the earlier era of stochastic optimisation as in Robbins & Monro (1954), Duflo (1996) or Benveniste & al. (1990). (The log-gradient of the normalising constant being estimated by the opposite of the gradient of the energy at a random point.)

“Running MCMC till convergence to obtain a sample x∼p(x) can be computationally expensive.”

Contrastive divergence à la Hinton (2002) is presented as a solution to the convergence problem by stopping early, which seems reasonable given the random gradient is mostly noise. With a possible correction for bias *à la* Jacob & al. (missing the published version).

An alternative to MLE is the 2005 Hyvärinen score, notorious for bypassing the normalising constant. But blamed in the paper for being costly in the dimension d of the variate x, due to the second derivative matrix. Which can be avoided by using Stein’s unbiased estimator of the risk (yay!) if using randomized data. And surprisingly linked with contrastive divergence as well, if a Taylor expansion is good enough an approximation! An interesting byproduct of the discussion on score matching is to turn it into an unintended form of ABC!

“Many methods have been proposed to automatically tune the noise distribution, such as Adversarial Contrastive Estimation (Bose et al., 2018), Conditional NCE (Ceylan and Gutmann, 2018) and Flow Contrastive Estimation (Gao et al., 2020).”

A third approach is the noise contrastive estimation method of Gutmann & Hyvärinen (2010) that connects with both others. And is a precursor of GAN methods, mentioned at the end of the paper via a (sort of) variational inequality.

## flow contrastive estimation

Posted in Books, Statistics with tags Bayesian inference, flight, GAN, generative adversarial networks, Hyperion, noise-contrastive estimation, normalising constant, normalising flow, Université de Montpellier on March 15, 2021 by xi'an**O**n the flight back from Montpellier, last week, I read a 2019 paper by Gao et al. revisiting the MLE estimation of a parametric family parameter when the normalising constant Z=Z(θ) is unknown. Via noise-contrastive estimation à la Guttman & Hyvärinnen (or à la Charlie Geyer). Treating the normalising constant Z as an extra parameter (as in Kong et al.) and the classification probability as an objective function and calling it a likelihood, which it is not in my opinion as (i) the allocation to the groups is not random and (ii) the original density of the actual observations does not appear in the so-called likelihood.

*“When q appears on the right of KL-divergence* [against *p*],* it is forced to cover most of the modes of p, When q appears on the left of KL-divergence, it tends to chase the major modes of p while ignoring the minor modes.”*

The flow in the title indicates that the contrastive distribution *q* is estimated by a flow-based estimator, namely the transform of a basic noise distribution via easily invertible and differentiable transforms, for instance with lower triangular Jacobians. This flow is also estimated directly from the data but the authors complain this estimation is not good enough for noise contrastive estimation and suggest instead resorting to a GAN version where the classification log-probability is maximised in the model parameters and minimsed in the flow parameters. Except that I feel it misses the true likelihood part. In other words, why on Hyperion would estimating all θ, Z=Z(θ), and α at once improve the estimation of Z?

The other aspect that puzzles me is that (12) uses integrated classification probabilities (with the unknown Z as extra parameter), rather than conditioning on the data, Bayes-like. (The difference between (12) and GAN is that here the discriminator function is constrained.) Esp. when the first expectation is replaced with its empirical version.

## your GAN is secretly an energy-based model

Posted in Books, Statistics, University life with tags accept-reject algorithm, Baltimore, conferences, Cornell University, discrimination, GANs, generative adversarial networks, Ithaca, JSM 1999, Langevin MCMC algorithm, MCMC, NeurIPS 2020, Wasserstein distance, wikipedia on January 5, 2021 by xi'an**A**s I was reading this NeurIPS 2020 paper by Che et al., and trying to make sense of it, I came across a citation to our paper Casella, Robert and Wells (2004) on a generalized accept-reject sampling scheme where the proposal changes at each simulation that sounds surprising if appreciated! But after checking this paper also appears as the first reference on the Wikipedia page for rejection sampling, which makes me wonder if many actually read it. (On the side, we mostly wrote this paper on a drive from Baltimore to Ithaca, after JSM 1999.)

“We provide more evidence that it is beneficial to sample from the energy-based model defined both by the generator and the discriminator instead of from the generator only.”

The paper seems to propose a post-processing of the generator output by a GAN, generating from the mixture of both generator and discriminator, via a (unscented) Langevin algorithm. The core idea is that, if p(.) is the true data generating process, g(.) the estimated generator and d(.) the discriminator, then

p(x) ≈ p⁰(x)∝g(x) exp(d(x))

(The approximation would be exact the discriminator optimal.) The authors work with the latent z’s, in the GAN meaning that generating pseudo-data x from g means taking a deterministic transform of z, x=G(z). When considering the above p⁰, a generation from p⁰ can be seen as accept-reject with acceptance probability proportional to exp[d{G(z)}]. (On the side, Lemma 1 is the standard validation for accept-reject sampling schemes.)

Reading this paper made me realised how much the field had evolved since my previous GAN related read. With directions like Metropolis-Hastings GANs and Wasserstein GANs. (And I noticed a “broader impact” section past the conclusion section about possible misuses with societal consequences, which is a new requirement for NeurIPS publications.)

## Bayesian GANs [#2]

Posted in Books, pictures, R, Statistics with tags ABC in Edinburgh, Bayesian GANs, compatible conditional distributions, Edinburgh, GANs, generative adversarial networks, ISBA 2018, joint posterior, MCMC convergence, Metropolis-within-Gibbs algorithm, Monte Carlo Statistical Methods, normal model, University of Edinburgh on June 27, 2018 by xi'an**A**s an illustration of the lack of convergence of the Gibbs sampler applied to the two “conditionals” defined in the Bayesian GANs paper discussed yesterday, I took the simplest possible example of a Normal mean generative model (one parameter) with a logistic discriminator (one parameter) and implemented the scheme (during an ISBA 2018 session). With flat priors on both parameters. And a Normal random walk as Metropolis-Hastings proposal. As expected, since there is no stationary distribution associated with the Markov chain, simulated chains do not exhibit a stationary pattern,

And they eventually reach an overflow error or a trapping state as the log-likelihood gets approximately to zero (red curve).

Too bad I missed the talk by Shakir Mohammed yesterday, being stuck on the Edinburgh by-pass at rush hour!, as I would have loved to hear his views about this rather essential issue…