Archive for gerrymandering

voting inequalities in the US

Posted in Kids, pictures, Travel with tags , , , , , , , , , on July 8, 2020 by xi'an

“We’re the only advanced democracy that deliberately discourages people from voting.” Barack Obama

Following a poorly attended local election in France last weekend, over-interpreted by media and political analysts as usual, with poorer categories more likely to abstain, I reflected on the supplementary degree of voting inequality in the US, where active voter suppression and voting discrimination run uncontested by legislative and constitutional bodies. As it happens, even for federal elections, the election laws are state-based, voted by partisan state lawmakers and implemented by equally partisan officials.This means discriminating practices can become part of these laws, including different restrictions on acceptable forms of identification that poorer voters may be unable to purchase, restrictions on voter registration and in particular on active drives for minority registrations, discriminatory closures of voting (poll) places,  as e.g. a single voting place for 600,000 voters, meaning unreachable stations for those without transportation means and those housebound, abusive voter purges by local administrations, e.g., the Interstate Voter Registration Crosscheck System having 99% more chances to remove legitimate than illegitimate voters, lifelong felon disenfranchisement, including for citizens having completed their sentence, some places asking for on-the-spot proof of US citizenship, involving document poorer voters cannot access, mail-in voting discrimination, no worker protection for participating in the vote, which takes place during the week, grossly underfunded poll budgets, leading for instance to hour long polling queues and various mismanagement of the votes, the possibility for National Guard staffing poll stations, and the century long absurdity of gerrymandering, where something like 60 million Americans live in a place where the ruling party has received the minority of the votes in a state election. Not to mention the election by an electoral college of the president where the winner may lag by 3 million votes behind his contender… And running uncontested grossly misleading political adds


computational statistics and molecular simulation [18w5023]

Posted in Books, Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , , , , , , , , on November 15, 2018 by xi'an

 I truly missed the gist of the first talk of the Wednesday morning of our X fertilisation workshop by Jianfeng Lu partly due to notations, although the topic very much correlated to my interests like path sampling, with an augmented version of HMC using an auxiliary indicator. And mentions made of BAOAB. Next, Marcello Pereyra spoke about Bayesian image analysis, with the difficulty of setting a prior on an image. In case of astronomical images there are motivations for an L¹ penalisation sparse prior. Sampling is an issue. Moreau-Yoshida proximal optimisation is used instead, in connection with our MCMC survey published in Stats & Computing two years ago. Transferability was a new concept for me, as introduced by Kerrie Mengersen (QUT), to extrapolate an estimated model to another system without using the posterior as a prior. With a great interlude about the crown of thorns starfish killer robot! Rather a prior determination based on historical data, in connection with recent (2018) Technometrics and Bayesian Analysis papers towards rejecting non-plausible priors. Without reading the papers (!), and before discussing the matter with Kerrie, here or in Marseille, I wonder at which level of precision this can be conducted. The use of summary statistics for prior calibration gave the approach an ABC flavour.

The hand-on session was Jonathan Mattingly’s discussion of gerrymandering reflecting on his experience at court! Hard to beat for an engaging talk reaching between communities. As it happens I discussed the original paper last year. Of course it was much more exciting to listen to Jonathan explaining his vision of the problem! Too bad I “had” to leave before the end for a [most enjoyable] rock climbing afternoon… To be continued at the dinner table! (Plus we got the complete explanation of the term gerrymandering, including this salamander rendering of the first identified as gerrymandered district!)

graph of the day & AI4good versus AI4bad

Posted in Books, pictures, Statistics with tags , , , , , , , , on July 15, 2018 by xi'an

Apart from the above graph from Nature, rendering in a most appalling and meaningless way the uncertainty about the number of active genes in the human genome, I read a couple of articles in this issue of Nature relating to the biases and dangers of societal algorithms. One of which sounded very close to the editorial in the New York Times on which Kristian Lum commented on this blog. With the attached snippet on what is fair and unfair (or not).

The second article was more surprising as it defended the use of algorithms for more democracy. Nothing less. Written by Wendy Tam Cho, professor of political sciences, law, statistics, and mathematics at UIUC, it argued that the software that she develops to construct electoral maps produces fair maps. Which sounds over-rosy imho, as aiming to account for all social, ethnic, income, &tc., groups, i.e., most of the axes that define a human, is meaningless, if only because the structure of these groups is not frozen in time. To state that “computers are impervious to the lure of power” is borderline ridiculous, as computers and algorithms are [so far] driven by humans. This is not to say that gerrymandering should not be fought by technological means, especially and obviously by open source algorithms, as existing proposals (discussed here) demonstrate, but to entertain the notion of a perfectly representative redistricting is not only illusory, but also far from democratic as it shies away from the one person one vote  at the basis of democracy. And the paper leaves us on the dark as to whom will decide on which group or which characteristic need be represented in the votes. Of course, this is the impression obtained by reading a one page editorial in Nature [in an overcrowded and sweltering commuter train] rather than the relevant literature. Nonetheless, I remain puzzled at why this editorial was ever published. (Speaking of democracy, the issue contains also warning reports about Hungary’s ultra-right government taking over the Hungarian Academy of Sciences.)

gerrymandering detection by MCMC

Posted in Books, Statistics with tags , , , , , , , on June 16, 2017 by xi'an

In the latest issue of Nature I read (June 8), there is a rather long feature article on mathematical (and statistical) ways of measuring gerrymandering, that is the manipulation of the delimitations of a voting district toward improving the chances of a certain party. (The name comes from Elbridge Gerry (1812) and the salamander shape of the district he created.) The difficulty covered by the article is about detecting gerrymandering, which leads to the challenging and almost philosophical question of defining a “fair” partition of a region into voting districts, when those are not geographically induced. Since each partition does not break the principles of “one person, one vote” and of majority rule. Having a candidate or party win at the global level and loose at every local level seems to go against this majority rule, but with electoral systems like in the US, this frequently happens (with dire consequences in the latest elections). Just another illustration of Simpson’s paradox, essentially. And a damning drawback of multi-tiered electoral systems.

“In order to change the district boundaries, we use a Markov Chain Monte Carlo algorithm to produce about 24,000 random but reasonable redistrictings.”

In the arXiv paper that led to this Nature article (along with other studies), Bagiat et al. essentially construct a tail probability to assess how extreme the current district partition is against a theoretical distribution of such partitions. Finding that the actual redistrictings of 2012 and 2016 in North Carolina are “extremely atypical”.  (The generation of random partitions obeyed four rules, namely equal population, geographic compacity and connexity, proximity to county boundaries, and a majority of Afro-American voters in at least two districts, the latest being a requirement in North Carolina. A score function was built by linear combination of four corresponding scores, mostly χ² like, and turned into a density, simulated annealing style. The determination of the final temperature β=1 (p.18) [or equivalently of the weights (p.20)] remains unclear to me. As does the use of more than 10⁵ simulated annealing iterations to produce a single partition (p.18)…

From a broader perspective, agreeing on a method to produce random district allocations could be the way to go towards solving the judicial dilemma in setting new voting maps as what is currently under discussion in the US.