A funny coincidence: as I was sitting next to Arnoldo Frigessi at the NBBC15 conference, I came upon a new question on Cross Validated about a dynamic mixture model he had developed in 2002 with Olga Haug and Håvård Rue [whom I also saw last week in Valencià]. The dynamic mixture model they proposed replaces the standard weights in the mixture with cumulative distribution functions, hence the term dynamic. Here is the version used in their paper (x>0)
where f is a Weibull density, g a generalised Pareto density, and w is the cdf of a Cauchy distribution [all distributions being endowed with standard parameters]. While the above object is not a mixture of a generalised Pareto and of a Weibull distributions (instead, it is a mixture of two non-standard distributions with unknown weights), it is close to the Weibull when x is near zero and ends up with the Pareto tail (when x is large). The question was about simulating from this distribution and, while an answer was in the paper, I replied on Cross Validated with an alternative accept-reject proposal and with a somewhat (if mildly) non-standard MCMC implementation enjoying a much higher acceptance rate and the same fit.