Archive for Helsinki

the most important statistical ideas of the past 50 years

Posted in Books, pictures, Statistics, Travel with tags , , , , , , , , , , , , , , , , , on January 10, 2020 by xi'an

A grand building entrance near the train station in HelsinkiAki and Andrew are celebrating the New Year in advance by composing a list of the most important statistics ideas occurring (roughly) since they were born (or since Fisher died)! Like

  • substitution of computing for mathematical analysis (incl. bootstrap)
  • fitting a model with a large number of parameters, using some regularization procedure to get stable estimates and good predictions (e.g., Gaussian processes, neural networks, generative adversarial networks, variational autoencoders)
  • multilevel or hierarchical modelling (incl. Bayesian inference)
  • advances in statistical algorithms for efficient computing (with a long list of innovations since 1970, including ABC!), pointing out that a large fraction was of the  divide & conquer flavour (in connection with large—if not necessarily Big—data)
  • statistical decision analysis (e.g., Bayesian optimization and reinforcement learning, getting beyond classical experimental design )
  • robustness (under partial specification, misspecification or in the M-open world)
  • EDA à la Tukey and statistical graphics (and R!)
  • causal inference (via counterfactuals)

Now, had I been painfully arm-bent into coming up with such a list, it would have certainly been shorter, for lack of opinion about some of these directions (even the Biometrika deputeditoship has certainly helped in reassessing the popularity of different branches!), and I would have have presumably been biased towards Bayes as well as more mathematical flavours. Hence objecting to the witty comment that “theoretical statistics is the theory of applied statistics”(p.10) and including Ghosal and van der Vaart (2017) as a major reference. Also bemoaning the lack of long-term structure and theoretical support of a branch of the machine-learning literature.

Maybe also more space and analysis could have been spent on “debates remain regarding appropriate use and interpretation of statistical methods” (p.11) in that a major difficulty with the latest in data science is not so much the method(s) as the data on which they are based, which in a large fraction of the cases, is not representative and is poorly if at all corrected for this bias. The “replication crisis” is thus only one (tiny) aspect of the challenge.

ABC in Svalbard, April 12-13 2021

Posted in Mountains, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , on November 4, 2019 by xi'an

This post is a very preliminary announcement that Jukka Corander, Judith Rousseau and myself are planning an ABC in Svalbard workshop in 2021, on 12-13 April, following the “ABC in…” franchise that started in 2009 in Paris… It would be great to hear expressions of interest from potential participants towards scaling the booking accordingly. (While this is a sequel to the highly productive ABCruise of two years ago, between Helsinki and Stockholm, the meeting will take place in Longyearbyen, Svalbard, and participants will have to fly there from either Oslo or Tromsø, Norway, As boat cruises from Iceland or Greenland start later in the year. Note also that in mid-April, being 80⁰ North, Svalbard enjoys more than 18 hours of sunlight and that the average temperature last April was -3.9⁰C with a high of 4⁰C.) The scientific committee should be constituted very soon, but we already welcome proposals for sessions (and sponsoring, quite obviously!).

deep and embarrassingly parallel MCMC

Posted in Books, pictures, Statistics with tags , , , , , , , on April 9, 2019 by xi'an

Diego Mesquita, Paul Blomstedt, and Samuel Kaski (from Helsinki, like the above picture) just arXived a paper on embarrassingly parallel MCMC. Following a series of papers discussed on this ‘og in the past. They use a deep learning approach of Dinh et al. (2017) to the computation of the probability density of a convoluted and non-volume-preserving transform of a given random variable to turn multiple samples from sub-posteriors [corresponding to the k k-th roots of the true posterior] into a sample from the true posterior. If I understand correctly the argument [on page 4], the deep neural network provides a density estimate that apparently does better than traditional non-parametric density estimates. Maybe by being more efficient than a Parzen-Rosenblat estimator which is of order the number of simulations… For any value of θ, the estimate of the true target is the product of these estimates and for a value of θ simulated from one of the subposteriors an importance weight naturally ensues. However, for a one-dimensional transform of θ, h(θ), I would prefer estimating first the density of h(θ) for each sample and then construct an importance weight. If only to avoid the curse of dimension.

On various benchmarks, like the banana-shaped 2D target above, the proposed method (NAP) does better. Even in relatively high dimensions. Given that the overall computing times are not produced, with only the calibration that the same number of subsamples were produced for all methods, it would be interesting to test the same performances on even higher dimensions and larger population sizes.

a new rule for adaptive importance sampling

Posted in Books, Statistics with tags , , , , , , , , , on March 5, 2019 by xi'an

Art Owen and Yi Zhou have arXived a short paper on the combination of importance sampling estimators. Which connects somehow with the talk about multiple estimators I gave at ESM last year in Helsinki. And our earlier AMIS combination. The paper however makes two important assumptions to reach optimal weighting, which is inversely proportional to the variance:

  1. the estimators are uncorrelated if dependent;
  2. the variance of the k-th estimator is of order a (negative) power of k.

The later is puzzling when considering a series of estimators, in that k appears to act as a sample size (as in AMIS), the power is usually unknown but also there is no reason for the power to be the same for all estimators. The authors propose to use ½ as the default, both because this is the standard Monte Carlo rate and because the loss in variance is then minimal, being 12% larger.

As an aside, Art Owen also wrote an invited discussion “the unreasonable effectiveness of Monte Carlo” of ” Probabilistic Integration: A Role in Statistical Computation?” by François-Xavier Briol, Chris  Oates, Mark Girolami (Warwick), Michael Osborne and Deni Sejdinovic, to appear in Statistical Science, discussion that contains a wealth of smart and enlightening remarks. Like the analogy between pseudo-random number generators [which work unreasonably well!] vs true random numbers and Bayesian numerical integration versus non-random functions. Or the role of advanced bootstrapping when assessing the variability of Monte Carlo estimates (citing a paper of his from 1992). Also pointing out at an intriguing MCMC paper by  Michael Lavine and Jim Hodges to appear in The American Statistician.

StanCon in Helsinki [29-31 Aug 2018]

Posted in Books, pictures, R, Statistics, Travel, University life with tags , , , , , , , , on March 7, 2018 by xi'an

As emailed to me by Aki Vehtari, the next StanCon will take place this summer in the wonderful city of Helsinki, at the end of August. On Aalto University Töölö Campus precisely. The list of speakers and tutorial teachers is available on the webpage. (The only “negative point” is that the conference does not include a Tuesday, the night of the transcendence 2 miles race!) Somewhat concluding this never-ending summer of Bayesian conferences!