## Archive for high dimensions

## Gabriel’s talk at Warwick on optimal transport

Posted in Statistics with tags Computational Optimal Transport, CRiSM, high dimensions, machine learning, optimal transport, seminar, University of Warwick on March 4, 2020 by xi'an## ISBA2020 program

Posted in Kids, Statistics, Travel, University life with tags approximate Bayesian inference, Bayesian computing, Bayesian statistics, China, conference, coronavirus epidemcs, high dimensions, ISBA 2020, Kunming, nCo-2019, program, variational Bayes methods, Yunnan on January 29, 2020 by xi'an**T**he scheduled program for ISBA 2020 is now on-line. And full of exciting sessions, many with computational focus. With dear hopes that the nCo-2019 epidemics will have abated by then (and not solely for the sake of the conference, most obviously!). While early registration ends by 15 April, the deadline for junior travel support ends up this month. And so does the deadline for contributions.

## A precursor of ABC-Gibbs

Posted in Books, R, Statistics with tags ABC, ABC-Gibbs, compatible conditional distributions, Genetics, Gibbs sampler, high dimensions, incoherent inference, incompatible conditionals, insufficiency, likelihood-free methods, sufficient statistics on June 7, 2019 by xi'an**F**ollowing our arXival of ABC-Gibbs, Dennis Prangle pointed out to us a 2016 paper by Athanasios Kousathanas, Christoph Leuenberger, Jonas Helfer, Mathieu Quinodoz, Matthieu Foll, and Daniel Wegmann, Likelihood-Free Inference in High-Dimensional Model, published in Genetics, Vol. 203, 893–904 in June 2016. This paper contains a version of ABC Gibbs where parameters are sequentially simulated from conditionals that depend on the data only through small dimension conditionally sufficient statistics. I had actually blogged about this paper in 2015 but since then completely forgotten about it. (The comments I had made at the time still hold, already pertaining to the coherence or lack thereof of the sampler. I had also forgotten I had run an experiment of an exact Gibbs sampler with incoherent conditionals, which then seemed to converge to something, if not the exact posterior.)

All ABC algorithms, including ABC-PaSS introduced here, require that statistics are sufficient for estimating the parameters of a given model. As mentioned above, parameter-wise sufficient statistics as required by ABC-PaSS are trivial to find for distributions of the exponential family. Since many population genetics models do not follow such distributions, sufficient statistics are known for the most simple models only. For more realistic models involving multiple populations or population size changes, only approximately-sufficient statistics can be found.

While Gibbs sampling is not mentioned in the paper, this is indeed a form of ABC-Gibbs, with the advantage of not facing convergence issues thanks to the sufficiency. The drawback being that this setting is restricted to exponential families and hence difficult to extrapolate to non-exponential distributions, as using almost-sufficient (or not) summary statistics leads to incompatible conditionals and thus jeopardise the convergence of the sampler. When thinking a wee bit more about the case treated by Kousathanas et al., I am actually uncertain about the validation of the sampler. When tolerance is equal to zero, this is not an issue as it reproduces the regular Gibbs sampler. Otherwise, each conditional ABC step amounts to introducing an auxiliary variable represented by the simulated summary statistic. Since the distribution of this summary statistic depends on more than the parameter for which it is sufficient, in general, it should also appear in the conditional distribution of other parameters. At least from this Gibbs perspective, it thus relies on incompatible conditionals, which makes the conditions proposed in our own paper the more relevant.

## congrats, Prof Rousseau!

Posted in Statistics with tags Advanced Grant, asymptotic Bayesian methods, department of statistics, ERC, EU, European Union, high dimensions, Judith Rousseau, University of Oxford on April 4, 2019 by xi'an## distributed posteriors

Posted in Books, Statistics, Travel, University life with tags CDT, high dimensions, minimaxity, OxWaSP, parallel MCMC, scalable MCMC, statistical theory, University of Warwick on February 27, 2019 by xi'an**A**nother presentation by our OxWaSP students introduced me to the notion of distributed posteriors, following a 2018 paper by Botond Szabó and Harry van Zanten. Which corresponds to the construction of posteriors when conducting a divide & conquer strategy. The authors show that an adaptation of the prior to the division of the sample is necessary to recover the (minimax) convergence rate obtained in the non-distributed case. This is somewhat annoying, except that the adaptation amounts to take the original prior to the power 1/m, when m is the number of divisions. They further show that when the regularity (parameter) of the model is unknown, the optimal rate cannot be recovered unless stronger assumptions are made on the non-zero parameters of the model.

“First of all, we show that depending on the communication budget, it might be advantageous to group local machines and let different groups work on different aspects of the high-dimensional object of interest. Secondly, we show that it is possible to have adaptation in communication restricted distributed settings, i.e. to have data-driven tuning that automatically achieves the correct bias-variance trade-off.”

I find the paper of considerable interest for scalable MCMC methods, even though the setting may happen to sound too formal, because the study incorporates parallel computing constraints. (Although I did not investigate the more theoretical aspects of the paper.)