Archive for HMC

general perspective on the Metropolis–Hastings kernel

Posted in Books, Statistics with tags , , , , , , , , , , , , , on January 14, 2021 by xi'an

[My Bristol friends and co-authors] Christophe Andrieu, and Anthony Lee, along with Sam Livingstone arXived a massive paper on 01 January on the Metropolis-Hastings kernel.

“Our aim is to develop a framework making establishing correctness of complex Markov chain Monte Carlo kernels a purely mechanical or algebraic exercise, while making communication of ideas simpler and unambiguous by allowing a stronger focus on essential features (…) This framework can also be used to validate kernels that do not satisfy detailed balance, i.e. which are not reversible, but a modified version thereof.”

A central notion in this highly general framework is, extending Tierney (1998), to see an MCMC kernel as a triplet involving a probability measure μ (on an extended space), an involution transform φ generalising the proposal step (i.e. þ²=id), and an associated acceptance probability ð. Then μ-reversibility occurs for

\eth(\xi)\mu(\text{d}\xi)= \eth(\phi(\xi))\mu^{\phi}(\text{d}\xi)

with the rhs involving the push-forward measure induced by μ and φ. And furthermore there is always a choice of an acceptance probability ð ensuring for this equality to happen. Interestingly, the new framework allows for mostly seamless handling of more complex versions of MCMC such as reversible jump and parallel tempering. But also non-reversible kernels, incl. for instance delayed rejection. And HMC, incl. NUTS. And pseudo-marginal, multiple-try, PDMPs, &c., &c. it is remarkable to see such a general theory emerging a this (late?) stage of the evolution of the field (and I will need more time and attention to understand its consequences).

the surprisingly overlooked efficiency of SMC

Posted in Books, Statistics, University life with tags , , , , , , , , , , , on December 15, 2020 by xi'an

At the Laplace demon’s seminar today (whose cool name I cannot tire of!), Nicolas Chopin gave a webinar with the above equally cool title. And the first slide debunking myths about SMC’s:

The second part of the talk is about a recent arXival Nicolas wrote with his student Hai-Dang DauI missed, about increasing the number of MCMC steps when moving the particles. Called waste-free SMC. Where only one fraction of the particles is updated, but this is enough to create a sort of independence from previous iterations of the SMC. (Hai-Dang Dau and Nicolas Chopin had to taylor their own convergence proof for this modification of the usual SMC. Producing a single-run assessment of the asymptotic variance.)

On the side, I heard about a very neat (if possibly toyish) example on estimating the number of Latin squares:

And the other item of information is that Nicolas’ and Omiros’ book, An Introduction to Sequential Monte Carlo, has now appeared! (Looking forward reading the parts I had not yet read.)

MCMC, variational inference, invertible flows… bridging the gap?

Posted in Books, Mountains, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , on October 2, 2020 by xi'an

Two weeks ago, my friend [see here when climbing Pic du Midi d’Ossau in 2005!] and coauthor Éric Moulines gave a very interesting on-line talk entitled MCMC, Variational Inference, Invertible Flows… Bridging the gap?, which was merging MCMC, variational autoencoders, and variational inference. I paid close attention as I plan to teach an advanced course on acronyms next semester in Warwick. (By acronyms, I mean ABC+GAN+VAE!)

The notion in this work is that variational autoencoders are based on over-simple mean-field variational distributions, that usually produce a poor approximation of the target distribution. Éric and his coauthors propose to introduce a Metropolis step in the VAE. This leads to a more general notion of Markov transitions and a global balance condition. Hamiltonian Monte Carlo can be used as well and it improves the latent distribution approximation, namely the encoder, which is surprising to me. The steps of the Markov kernel produce a manageable transform of the initial mean field approximation, a random version of the original VAE. Manageable provided not too many MCMC steps are implemented. (Now, the flow of slides was much too fast for me to get a proper understanding of the implementation of the method, of the degree of its calibration, and of the computing cost. I need to read the associated papers.)

Once the talk was over, I went back to changing tires and tubes, as two bikes of mine had flat tires, the latest being a spectacular explosion (!) that seemingly went through the tire (although I believe the opposite happened, namely the tire got slashed and induced the tube to blow out very quickly). Blame the numerous bits of broken glass over bike paths.

state of the art in sampling & clustering [workshop]

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , on September 17, 2020 by xi'an

Next month, I am taking part in a workshop on sampling & clustering at the Max-Planck-Institut für Physik in Garching, Germany (near München). By giving a three hour introduction to ABC, as I did three years ago in Autrans. Being there and talking with local researchers if the sanitary conditions allow. From my office otherwise. Other speakers include Michael Betancourt on HMC and Johannes Buchner on nested sampling. The remote participation to this MPI workshop is both open and free, but participants must register before 18 September, namely tomorrow.

transport Monte Carlo

Posted in Books, pictures, Statistics, Travel with tags , , , , , , , , , , , , , , , on August 31, 2020 by xi'an

Read this recent arXival by Leo Duan (from UF in Gainesville) on transport approaches to approximate Bayesian computation, in connection with normalising flows. The author points out a “lack of flexibility in a large class of normalizing flows”  to bring forward his own proposal.

“…we assume the reference (a multivariate uniform distribution) can be written as a mixture of many one-to-one transforms from the posterior”

The transportation problem is turned into defining a joint distribution on (β,θ) such that θ is marginally distributed from the posterior and β is one of an infinite collection of transforms of θ. Which sounds quite different from normalizing flows, to be sure. Reverting the order, if one manages to simulate β from its marginal the resulting θ is one of the transforms. Chosen to be a location-scale modification of β, s⊗β+m. The weights when going from θ to β are logistic transforms with Dirichlet distributed scales. All with parameters to be optimised by minimising the Kullback-Leibler distance between the reference measure on β and its inverse mixture approximation, and resorting to gradient descent. (This may sound a wee bit overwhelming as an approximation strategy and I actually had to make a large cup of strong macha to get over it, but this may be due to the heat wave occurring at the same time!) Drawing θ from this approximation is custom-made straightforward and an MCMC correction can even be added, resulting in an independent Metropolis-Hastings version since the acceptance ratio remains computable. Although this may defeat the whole purpose of the exercise by stalling the chain if the approximation is poor (hence suggesting this last step being used instead as a control.)

The paper also contains a theoretical section that studies the approximation error, going to zero as the number of terms in the mixture, K, goes to infinity. Including a Monte Carlo error in log(n)/n (and incidentally quoting a result from my former HoD at Paris 6, Paul Deheuvels). Numerical experiments show domination or equivalence with some other solutions, e.g. being much faster than HMC, the remaining $1000 question being of course the on-line evaluation of the quality of the approximation.