## max vs. min

Posted in Books, Kids, Statistics with tags , , , , , , , , on March 26, 2022 by xi'an

Another intriguing question on X validated (about an exercise in Jun Shao’s book) that made me realise a basic fact about exponential distributions. When considering two Exponential random variables X and Y with possibly different parameters λ and μ,  Z⁺=max{X,Y} is dependent on the event X>Y while Z⁻=min{X,Y} is not (and distributed as an Exponential variate with parameter λ+μ.) Furthermore, Z⁺ is distributed from a signed mixture

$\frac{\lambda+\mu}{\mu}\mathcal Exp(\lambda)-\frac{\lambda}{\mu}\mathcal Exp(\lambda+\mu)$

conditionally on the event X>Y, meaning that there is no sufficient statistic of fixed dimension when given a sample of n realisations of Z⁺’s along with the indicators of the events X>Y…. This may explain why there exists an unbiased estimator of λ⁻¹-μ⁻¹ in this case and (apparently) not when replacing Z⁺ by Z⁻. (Even though the exercise asks for the UMVUE.)

## simulating hazard

Posted in Books, Kids, pictures, Statistics, Travel with tags , , , , , , , , , , , , on May 26, 2020 by xi'an

A rather straightforward X validated question that however leads to an interesting simulation question: when given the hazard function h(·), rather than the probability density f(·), how does one simulate this distribution? Mathematically h(·) identifies the probability distribution as much as f(·),

$1-F(x)=\exp\left\{ \int_{-\infty}^x h(t)\,\text{d}t \right\}=\exp\{H(x)\}$

which means cdf inversion could be implemented in principle. But in practice, assuming the integral is intractable, what would an exact solution look like? Including MCMC versions exploiting one fixed point representation or the other.. Since

$f(x)=h(x)\,\exp\left\{ \int_{-\infty}^x h(t)\,\text{d}t \right\}$

using an unbiased estimator of the exponential term in a pseudo-marginal algorithm would work. And getting an unbiased estimator of the exponential term can be done by Glynn & Rhee debiasing. But this is rather costly… Having Devroye’s book under my nose [at my home desk] should however have driven me earlier to the obvious solution to… simply open it!!! A whole section (VI.2) is indeed dedicated to simulations when the distribution is given by the hazard rate. (Which made me realise this problem is related with PDMPs in that thinning and composition tricks are common to both.) Besides the inversion method, ie X=H⁻¹(U), Devroye suggests thinning a Poisson process when h(·) is bounded by a manageable g(·). Or a generic dynamic thinning approach that converges when h(·) is non-increasing.

## done! [#2]

Posted in Kids, Statistics, University life with tags , , , , , , , , , on January 21, 2016 by xi'an

Phew! I just finished my enormous pile of homeworks for the computational statistics course… This massive pile is due to an unexpected number of students registering for the Data Science Master at ENSAE and Paris-Dauphine. As I was not aware of this surge, I kept to my practice of asking students to hand back solved exercises from Monte Carlo Statistical Methods at the beginning of each class. And could not change the rules of the game once the course had started! Next year, I’ll make sure to get some backup for grading those exercises. Or go for group projects instead…

## the travelling salesman

Posted in Statistics with tags , , , , , , , , on January 3, 2015 by xi'an

A few days ago, I was grading my last set of homeworks for the MCMC graduate course I teach to both Dauphine and ENSAE graduate students. A few students had chosen to write a travelling salesman simulated annealing code (Exercice 7.22 in Monte Carlo Statistical Methods) and one of them included this quote

“And when I saw that, I realized that selling was the greatest career a man could want. ‘Cause what could be more satisfying than to be able to go, at the age of eighty-four, into twenty or thirty different cities, and pick up a phone, and be remembered and loved and helped by so many different people ?”
Arthur Miller, Death of a Salesman

which was a first!