Archive for HPD region

Bayesian parameter estimation versus model comparison

Posted in Books, pictures, Statistics with tags , , , , , , on December 5, 2016 by xi'an

John Kruschke [of puppies’ fame!] wrote a paper in Perspectives in Psychological Science a few years ago on the comparison between two Bayesian approaches to null hypotheses. Of which I became aware through a X validated question that seemed to confuse Bayesian parameter estimation with Bayesian hypothesis testing.

“Regardless of the decision rule, however, the primary attraction of using parameter estimation to assess null values is that the an explicit posterior distribution reveals the relative credibility of all the parameter values.” (p.302)

After reading this paper, I realised that Kruschke meant something completely different, namely that a Bayesian approach to null hypothesis testing could operate from the posterior on the corresponding parameter, rather than to engage into formal Bayesian model comparison (null versus the rest of the World). The notion is to check whether or not the null value stands within the 95% [why 95?] HPD region [modulo a buffer zone], which offers the pluses of avoiding a Dirac mass at the null value and a long-term impact of the prior tails on the decision, with the minus of replacing the null with a tolerance region around the null and calibrating the rejection level. This opposition is thus a Bayesian counterpart of running tests on point null hypotheses either by Neyman-Pearson procedures or by confidence intervals. Note that in problems with nuisance parameters this solution requires a determination of the 95% HPD region associated with the marginal on the parameter of interest, which may prove a challenge.

“…the measure provides a natural penalty for vague priors that allow a broad range of parameter values, because a vague prior dilutes credibility across a broad range of parameter values, and therefore the weighted average is also attenuated.” (p. 306)

While I agree with most of the critical assessment of Bayesian model comparison, including Kruschke’s version of Occam’s razor [and Lindley’s paradox] above, I do not understand how Bayesian model comparison fails to return a full posterior on both the model indices [for model comparison] and the model parameters [for estimation]. To state that it does not because the Bayes factor only depends on marginal likelihoods (p.307) sounds unfair if only because most numerical techniques to approximate the Bayes factors rely on preliminary simulations of the posterior. The point that the Bayes factor strongly depends on the modelling of the alternative model is well-taken, albeit the selection of the null in the “estimation” approach does depend as well on this alternative modelling. Which is an issue if one ends up accepting the null value and running a Bayesian analysis based on this null value.

“The two Bayesian approaches to assessing null values can be unified in a single hierarchical model.” (p.308)

Incidentally, the paper briefly considers a unified modelling that can be interpreted as a mixture across both models, but this mixture representation completely differs from ours [where we also advocate estimation to replace testing] since the mixture is at the likelihood x prior level, as in O’Neill and Kypriaos.

rediscovering the harmonic mean estimator

Posted in Kids, Statistics, University life with tags , , , , , , , on November 10, 2015 by xi'an

When looking at unanswered questions on X validated, I came across a question where the author wanted to approximate a normalising constant

N=\int g(x)\,\text{d}x\,,

while simulating from the associated density, g. While seemingly unaware of the (huge) literature in the area, he re-derived [a version of] the harmonic mean estimate by considering the [inverted importance sampling] identity

\int_\mathcal{X} \dfrac{\alpha(x)}{g(x)}p(x) \,\text{d}x=\int_\mathcal{X} \dfrac{\alpha(x)}{N} \,\text{d}x=\dfrac{1}{N}

when α is a probability density and by using for α the uniform over the whole range of the simulations from g. This choice of α obviously leads to an estimator with infinite variance when the support of g is unbounded, but the idea can be easily salvaged by using instead another uniform distribution, for instance on an highest density region, as we studied in our papers with Darren Wraith and Jean-Michel Marin. (Unfortunately, the originator of the question does not seem any longer interested in the problem.)

Tractable Fully Bayesian inference via convex optimization and optimal transport theory

Posted in Books, Statistics, University life with tags , , , , , , , , on October 6, 2015 by xi'an

IMG_0294“Recently, El Moselhy et al. proposed a method to construct a map that pushed forward the prior measure to the posterior measure, casting Bayesian inference as an optimal transport problem. Namely, the constructed map transforms a random variable distributed according to the prior into another random variable distributed according to the posterior. This approach is conceptually different from previous methods, including sampling and approximation methods.”

Yesterday, Kim et al. arXived a paper with the above title, linking transport theory with Bayesian inference. Rather strangely, they motivate the transport theory with Galton’s quincunx, when the apparatus is a discrete version of the inverse cdf transform… Of course, in higher dimensions, there is no longer a straightforward transform and the paper shows (or recalls) that there exists a unique solution with positive Jacobian for log-concave posteriors. For instance, log-concave priors and likelihoods. This solution remains however a virtual notion in practice and an approximation is constructed via a (finite) functional polynomial basis. And minimising an empirical version of the Kullback-Leibler distance.

I am somewhat uncertain as to how and why apply such a transform to simulations from the prior (which thus has to be proper). Producing simulations from the posterior certainly is a traditional way to approximate Bayesian inference and this is thus one approach to this simulation. However, the discussion of the advantage of this approach over, say, MCMC, is quite limited. There is no comparison with alternative simulation or non-simulation methods and the computing time for the transport function derivation. And on the impact of the dimension of the parameter space on the computing time. In connection with recent discussions on probabilistic numerics and super-optimal convergence rates, Given that it relies on simulations, I doubt optimal transport can do better than O(√n) rates. One side remark about deriving posterior credible regions from (HPD)  prior credible regions: there is no reason the resulting region is optimal in volume (HPD) given that the transform is non-linear.

Statistics slides (5)

Posted in Books, Kids, Statistics, University life with tags , , , , , on December 7, 2014 by xi'an

La Défense from Paris-Dauphine, Nov. 15, 2012Here is the fifth and last set of slides for my third year statistics course, trying to introduce Bayesian statistics in the most natural way and hence starting with… Rasmus’ socks and ABC!!! This is an interesting experiment as I have no idea how my students will react. Either they will see the point besides the anecdotal story or they’ll miss it (being quite unhappy so far about the lack of mathematical rigour in my course and exercises…). We only have two weeks left so I am afraid the concept will not have time to seep through!

beta HPD

Posted in Books, R, Statistics, Uncategorized, University life with tags , , , , , , , on October 17, 2013 by xi'an

While writing an introductory chapter on Bayesian analysis (in French), I came by the issue of computing an HPD region when the posterior distribution is a Beta B(α,β) distribution… There is no analytic solution and hence I resorted to numerical resolution (provided here for α=117.5, β=115.5):


  # find the symmetric


  # find the coverage

and got the following return:

> ff(.95)
[1] 0.4504879
> f(ff(.95))
[1] 0.5580267

which was enough for my simple book illustration… Since (.450,558) is then the HPD region at credible level 0.95.

summary statistics for ABC model choice

Posted in Statistics with tags , , , , , , , , , on March 11, 2013 by xi'an

countryside near Kenilworth, England, March 5, 2013A few days ago, Dennis Prangle, Paul Fernhead, and their co-authors from New Zealand have posted on arXiv their (long-awaited) study of the selection of summary statistics for ABC model choice. And I read it during my trip to England, in trains and planes, if not when strolling in the beautiful English countryside as above.

As posted several times on this ‘Og, the crux of the analysis is that the Bayes factor is a good type of summary when comparing two models, this result extending to more model by considering instead the vector of evidences. As in the initial Read Paper by Fearnhead and Prangle, there is no true optimality in using the Bayes factor or vector of evidences, strictly speaking, besides the fact that the vector of evidences is minimal sufficient for the marginal models (integrating out the parameters). (This was a point made in my discussion.) The implementation of the principle is similar to this Read Paper setting as well: run a pilot ABC simulation, estimate the vector of evidences, and re-run the main ABC simulation using this estimate as the summary statistic. The paper contains a simulation study using some of our examples (in Marin et al., 2012), as well as an application to genetic bacterial data. Continue reading

a remarkably simple and accurate method for computing the Bayes factor &tc.

Posted in Statistics with tags , , , , , , , , on February 13, 2013 by xi'an

This recent arXiv posting by Martin Weinberg and co-authors was pointed out to me by friends because of its title! It indeed sounded a bit inflated. And also reminded me of old style papers where the title was somehow the abstract. Like An Essay towards Solving a Problem in the Doctrine of Chances… So I had a look at it on my way to Gainesville. The paper starts from the earlier paper by Weinberg (2012) in Bayesian Analysis where he uses an HPD region to determine the Bayes factor by a safe harmonic mean estimator (an idea we already advocated earlier with Jean-Michel Marin in the San Antonio volume and with Darren Wraith in the MaxEnt volume). An extra idea is to try to optimise [against the variance of the resulting evidence] the region over which the integration is performed: “choose a domain that results in the most accurate integral with the smallest number of samples” (p.3). The authors proceed by volume peeling, using some quadrature formula for the posterior coverage of the region, either by Riemann or Lebesgue approximations (p.5). I was fairly lost at this stage and the third proposal based on adaptively managing hyperrectangles (p.7) went completely over my head! The sentence “the results are clearly worse with O() errors, but are still remarkably better for high dimensionality”(p.11) did not make sense either… The method may thus be remarkably simple, but the paper is not written in a way that conveys this impression!