Archive for HPD region

beta HPD

Posted in Books, R, Statistics, Uncategorized, University life with tags , , , , , , , on October 17, 2013 by xi'an

While writing an introductory chapter on Bayesian analysis (in French), I came by the issue of computing an HPD region when the posterior distribution is a Beta B(α,β) distribution… There is no analytic solution and hence I resorted to numerical resolution (provided here for α=117.5, β=115.5):


  # find the symmetric


  # find the coverage

and got the following return:

> ff(.95)
[1] 0.4504879
> f(ff(.95))
[1] 0.5580267

which was enough for my simple book illustration… Since (.450,558) is then the HPD region at credible level 0.95.

summary statistics for ABC model choice

Posted in Statistics with tags , , , , , , , , , on March 11, 2013 by xi'an

countryside near Kenilworth, England, March 5, 2013A few days ago, Dennis Prangle, Paul Fernhead, and their co-authors from New Zealand have posted on arXiv their (long-awaited) study of the selection of summary statistics for ABC model choice. And I read it during my trip to England, in trains and planes, if not when strolling in the beautiful English countryside as above.

As posted several times on this ‘Og, the crux of the analysis is that the Bayes factor is a good type of summary when comparing two models, this result extending to more model by considering instead the vector of evidences. As in the initial Read Paper by Fearnhead and Prangle, there is no true optimality in using the Bayes factor or vector of evidences, strictly speaking, besides the fact that the vector of evidences is minimal sufficient for the marginal models (integrating out the parameters). (This was a point made in my discussion.) The implementation of the principle is similar to this Read Paper setting as well: run a pilot ABC simulation, estimate the vector of evidences, and re-run the main ABC simulation using this estimate as the summary statistic. The paper contains a simulation study using some of our examples (in Marin et al., 2012), as well as an application to genetic bacterial data. Continue reading

a remarkably simple and accurate method for computing the Bayes factor &tc.

Posted in Statistics with tags , , , , , , , , on February 13, 2013 by xi'an

This recent arXiv posting by Martin Weinberg and co-authors was pointed out to me by friends because of its title! It indeed sounded a bit inflated. And also reminded me of old style papers where the title was somehow the abstract. Like An Essay towards Solving a Problem in the Doctrine of Chances… So I had a look at it on my way to Gainesville. The paper starts from the earlier paper by Weinberg (2012) in Bayesian Analysis where he uses an HPD region to determine the Bayes factor by a safe harmonic mean estimator (an idea we already advocated earlier with Jean-Michel Marin in the San Antonio volume and with Darren Wraith in the MaxEnt volume). An extra idea is to try to optimise [against the variance of the resulting evidence] the region over which the integration is performed: “choose a domain that results in the most accurate integral with the smallest number of samples” (p.3). The authors proceed by volume peeling, using some quadrature formula for the posterior coverage of the region, either by Riemann or Lebesgue approximations (p.5). I was fairly lost at this stage and the third proposal based on adaptively managing hyperrectangles (p.7) went completely over my head! The sentence “the results are clearly worse with O() errors, but are still remarkably better for high dimensionality”(p.11) did not make sense either… The method may thus be remarkably simple, but the paper is not written in a way that conveys this impression!

testing via credible sets

Posted in Statistics, University life with tags , , , , , , , , , , , on October 8, 2012 by xi'an

Måns Thulin released today an arXiv document on some decision-theoretic justifications for [running] Bayesian hypothesis testing through credible sets. His main point is that using the unnatural prior setting mass on a point-null hypothesis can be avoided by rejecting the null when the point-null value of the parameter does not belong to the credible interval and that this decision procedure can be validated through the use of special loss functions. While I stress to my students that point-null hypotheses are very unnatural and should be avoided at all cost, and also that constructing a confidence interval is not the same as designing a test—the former assess the precision in the estimation, while the later opposes two different and even incompatible models—, let us consider Måns’ arguments for their own sake.

The idea of the paper is that there exist loss functions for testing point-null hypotheses that lead to HPD, symmetric and one-sided intervals as acceptance regions, depending on the loss func. This was already found in Pereira & Stern (1999). The issue with these loss functions is that they involve the corresponding credible sets in their definition, hence are somehow tautological. For instance, when considering the HPD set and T(x) as the largest HPD set not containing the point-null value of the parameter, the corresponding loss function is

L(\theta,\varphi,x) = \begin{cases}a\mathbb{I}_{T(x)^c}(\theta) &\text{when }\varphi=0\\ b+c\mathbb{I}_{T(x)}(\theta) &\text{when }\varphi=1\end{cases}

parameterised by a,b,c. And depending on the HPD region.

Måns then introduces new loss functions that do not depend on x and still lead to either the symmetric or the one-sided credible acceptance regions. However, one test actually has two different alternatives (Theorem 2), which makes it essentially a composition of two one-sided tests, while the other test returns the result to a one-sided test (Theorem 3), so even at this face-value level, I do not find the result that convincing. (For the one-sided test, George Casella and Roger Berger (1986) established links between Bayesian posterior probabilities and frequentist p-values.) Both Theorem 3 and the last result of the paper (Theorem 4) use a generic and set-free observation-free loss function (related to eqn. (5.2.1) in my book!, as quoted by the paper) but (and this is a big but) they only hold for prior distributions setting (prior) mass on both the null and the alternative. Otherwise, the solution is to always reject the hypothesis with the zero probability… This is actually an interesting argument on the why-are-credible-sets-unsuitable-for-testing debate, as it cannot bypass the introduction of a prior mass on Θ0!

Overall, I furthermore consider that a decision-theoretic approach to testing should encompass future steps rather than focussing on the reply to the (admittedly dumb) question is θ zero? Therefore, it must have both plan A and plan B at the ready, which means preparing (and using!) prior distributions under both hypotheses. Even on point-null hypotheses.

Now, after I wrote the above, I came upon a Stack Exchange page initiated by Måns last July. This is presumably not the first time a paper stems from Stack Exchange, but this is a fairly interesting outcome: thanks to the debate on his question, Måns managed to get a coherent manuscript written. Great! (In a sense, this reminded me of the polymath experiments of Terry Tao, Timothy Gower and others. Meaning that maybe most contributors could have become coauthors to the paper!)

Another harmonic mean approximation

Posted in R, Statistics with tags , , , , , , on June 27, 2010 by xi'an

Martin Weinberg posted on arXiv a revision of his paper, Computing the Bayesian Factor from a Markov chain Monte Carlo Simulation of the Posterior Distribution, that is submitted to Bayesian Analysis. I have already mentioned this paper in a previous post, but I remain unconvinced of the appeal of the paper method, given that it recovers the harmonic mean approximation to the marginal likelihood… The method is very close to John Skilling’s nested sampling, except that the simulation is run from the posterior rather than from the prior, hence the averaging on the inverse likelihoods and hence the harmonic mean connection. The difficulty with the original (Michael Newton and Adrian Raftery’s) harmonic mean estimator is attributed to “a few outlying terms with abnormally small values of” the likelihood, while, as clearly spelled out by Radford Neal,  the poor behaviour of the harmonic mean estimator has nothing abnormal and is on the opposite easily explainable.

I must admit I found the paper difficult to read, partly because of the use of poor and ever-changing notations and partly because of the lack of mathematical rigour (see, e.g., eqn (11)). (And maybe also because of the current heat wave.) In addition to the switch from prior to posterior in the representation of the evidence, a novel perspective set in the paper seems to be an extension of the standard harmonic mean identity that relates to the general expression of Gelfand and Dey (1994, Journal of the Royal Statistical Society B) when using an indicator function as an instrumental function. There is therefore a connection with our proposal (made with Jean-Michel Marin) of considering an HPD region for excluding the tails of the likelihood, even though the set of integration is defined as “eliminating the divergent samples with L_i \ll 1“. This is essentially the numerical Lebesgue algorithm advanced as one of two innovative algorithms by Martin Weinberg. I wonder how closely related the second (volume tesselation) algorithm is to Huber and Schott’s TPA algorithm, in the sense that TPA also requires a “smaller” integral….