Archive for image classification

Big Bayes goes South

Posted in Books, Mountains, pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , , , , , on December 5, 2018 by xi'an

At the Big [Data] Bayes conference this week [which I found quite exciting despite a few last minute cancellations by speakers] there were a lot of clustering talks including the ones by Amy Herring (Duke), using a notion of centering that should soon appear on arXiv. By Peter Müller (UT, Austin) towards handling large datasets. Based on a predictive recursion that takes one value at a time, unsurprisingly similar to the update of Dirichlet process mixtures. (Inspired by a 1998 paper by Michael Newton and co-authors.) The recursion doubles in size at each observation, requiring culling of negligible components. Order matters? Links with Malsiner-Walli et al. (2017) mixtures of mixtures. Also talks by Antonio Lijoi and Igor Pruenster (Boconni Milano) on completely random measures that are used in creating clusters. And by Sylvia Frühwirth-Schnatter (WU Wien) on creating clusters for the Austrian labor market of the impact of company closure. And by Gregor Kastner (WU Wien) on multivariate factor stochastic models, with a video of a large covariance matrix evolving over time and catching economic crises. And by David Dunson (Duke) on distance clustering. Reflecting like myself on the definitely ill-defined nature of the [clustering] object. As the sample size increases, spurious clusters appear. (Which reminded me of a disagreement I had had with David McKay at an ICMS conference on mixtures twenty years ago.) Making me realise I missed the recent JASA paper by Miller and Dunson on that perspective.

Some further snapshots (with short comments visible by hovering on the picture) of a very high quality meeting [says one of the organisers!]. Following suggestions from several participants, it would be great to hold another meeting at CIRM in a near future. Continue reading

high-dimensional stochastic simulation and optimisation in image processing [day #2]

Posted in pictures, Statistics, Travel, Uncategorized, University life, Wines with tags , , , , , , on August 30, 2014 by xi'an

After a nice morning run down Leigh Woods and on the muddy banks of the Avon river, I attended a morning session on hyperspectral image non-linear modelling. Topic about which I knew nothing beforehand. Hyperspectral images are 3-D images made of several wavelengths to improve their classification as a mixture of several elements. The non-linearity is due to the multiple reflections from the ground as well as imperfections in the data collection. I found this new setting of clear interest, from using mixtures to exploring Gaussian processes and Hamiltonian Monte Carlo techniques on constrained spaces… Not to mention the “debate” about using Bayesian inference versus optimisation. It was overall a day of discovery as I am unaware of the image processing community (being the outlier in this workshop!) and of their techniques. The problems mostly qualify as partly linear high-dimension inverse problems, with rather standard if sometimes hybrid MCMC solutions. (The day ended even more nicely with another long run in the fields of Ashton Court and a conference diner by the river…)


high-dimensional stochastic simulation and optimisation in image processing [day #1]

Posted in pictures, Statistics, Travel, Uncategorized, University life, Wines with tags , , , , , , , , , , , on August 29, 2014 by xi'an

Even though I flew through Birmingham (and had to endure the fundamental randomness of trains in Britain), I managed to reach the “High-dimensional Stochastic Simulation and Optimisation in Image Processing” conference location (in Goldney Hall Orangery) in due time to attend the (second) talk by Christophe Andrieu. He started with an explanation of the notion of controlled Markov chain, which reminded me of our early and famous-if-unpublished paper on controlled MCMC. (The label “controlled” was inspired by Peter Green who pointed out to us the different meanings of controlled in French [meaning checked or monitored] and in English . We use it here in the English sense, obviously.) The main focus of the talk was on the stability of controlled Markov chains. With of course connections with out controlled MCMC of old, for instance the case of the coerced acceptance probability. Which happened to be not that stable! With the central tool being Lyapounov functions. (Making me wonder whether or not it would make sense to envision the meta-problem of adaptively estimating the adequate Lyapounov function from the MCMC outcome.)

As I had difficulties following the details of the convex optimisation talks in the afternoon, I eloped to work on my own and returned to the posters & wine session, where the small number of posters allowed for the proper amount of interaction with the speakers! Talking about the relevance of variational Bayes approximations and of possible tools to assess it, about the use of new metrics for MALA and of possible extensions to Hamiltonian Monte Carlo, about Bayesian modellings of fMRI and of possible applications of ABC in this framework. (No memorable wine to make the ‘Og!) Then a quick if reasonably hot curry and it was already bed-time after a rather long and well-filled day!z

Advances in scalable Bayesian computation [day #3]

Posted in Books, Mountains, pictures, R, Statistics, University life with tags , , , , , , , , , , on March 6, 2014 by xi'an

polyptych painting within the TransCanada Pipeline Pavilion, Banff Centre, Banff, March 21, 2012We have now gone over the midpoint of our workshop Advances in Scalable Bayesian Computation with three talks in the morning and an open research or open air afternoon. (Maybe surprisingly I chose to stay indoors and work on a new research topic rather than trying cross-country skiing!) If I must give a theme for the day, it would be (jokingly) corporate Big data, as the three speakers spoke of problems and solutions connected with Google, Facebook and similar companies. First, Russ Salakhutdinov presented some  hierarchical structures on multimedia data, like connecting images and text, with obvious applications on Google. The first part described Boltzman machines with impressive posterior simulations of characters and images. (Check the video at 45:00.) Then Steve Scott gave us a Google motivated entry to embarrassingly parallel algorithms, along the lines of papers recently discussed on the ‘Og. (Too bad we forgot to start the video at the very beginning!) One of the novel things in the talk (for me) was the inclusion of BART in this framework, with the interesting feature that using the whole prior on each machine was way better than using a fraction of the prior, as predicted by the theory! And Joaquin Quinonero Candela provided examples of machine learning techniques used by Facebook to suggest friends and ads in a most efficient way (techniques remaining hidden!).

Even though the rest of the day was free, the two hours of exercising between the pool in the early morning and the climbing wall in the late afternoon left me with no energy to experiment curling with a large subsample of the conference attendees, much to my sorrow!