“Methods to estimate the marginal likelihood should be sensitive to the prior choice. Non-informative priors should increase the contribution of low-likelihood regions of parameter space in the estimated marginal likelihood. Consequently, the prior choice should affect the estimated evidence.”

In a most recent arXival, Maturana, Brewer, and Klaere discuss of the appeal of nested sampling for conducting model choice in philogenetic models. In comparison with the “generalized steppingstone sampling” method, which represents the evidence as a product of ratios of evidences (Fan et al., 2011). And which I do not think I have previously met, with all references provided therein relating to Bayesian philogenetics, apparently. The stepping stone approach relies on a sequence of tempered targets, moving from a reference distribution to the real target as a temperature β goes from zero to one. (The paper also mentions thermodynamic integration as too costly.) Nested sampling—much discussed on this blog!—is presented in this paper as having the ability to deal with partly convex likelihoods, although I do not really get how or why. (As there is nothing new in the fairly pedagogical pretentation of nested sampling therein.) Nothing appears to be mentioned about the difficulty to handle multimodal as high likelihood isolated regions are unlikely to be sampled from poorly weighted priors (by which I mean that a region with significant likelihood mass is unlikely to get sampled if the prior distribution gives little prior weight to that region). The novelty in the paper is to compare nested sampling with generalized steppingstone sampling and path sampling on several phylogenetic examples. I did not spot computing time mentioned there. As usual with examples, my reservation is that the conclusions drawn for one particular analysis of one (three) particular example(s) does not convey a general method about the power and generality of a method. Even though I acknowledge that nested sampling is on principle operational in wide generality.