Archive for incoherent inference

A precursor of ABC-Gibbs

Posted in Books, R, Statistics with tags , , , , , , , , , , on June 7, 2019 by xi'an

Following our arXival of ABC-Gibbs, Dennis Prangle pointed out to us a 2016 paper by Athanasios Kousathanas, Christoph Leuenberger, Jonas Helfer, Mathieu Quinodoz, Matthieu Foll, and Daniel Wegmann, Likelihood-Free Inference in High-Dimensional Model, published in Genetics, Vol. 203, 893–904 in June 2016. This paper contains a version of ABC Gibbs where parameters are sequentially simulated from conditionals that depend on the data only through small dimension conditionally sufficient statistics. I had actually blogged about this paper in 2015 but since then completely forgotten about it. (The comments I had made at the time still hold, already pertaining to the coherence or lack thereof of the sampler. I had also forgotten I had run an experiment of an exact Gibbs sampler with incoherent conditionals, which then seemed to converge to something, if not the exact posterior.)

All ABC algorithms, including ABC-PaSS introduced here, require that statistics are sufficient for estimating the parameters of a given model. As mentioned above, parameter-wise sufficient statistics as required by ABC-PaSS are trivial to find for distributions of the exponential family. Since many population genetics models do not follow such distributions, sufficient statistics are known for the most simple models only. For more realistic models involving multiple populations or population size changes, only approximately-sufficient statistics can be found.

While Gibbs sampling is not mentioned in the paper, this is indeed a form of ABC-Gibbs, with the advantage of not facing convergence issues thanks to the sufficiency. The drawback being that this setting is restricted to exponential families and hence difficult to extrapolate to non-exponential distributions, as using almost-sufficient (or not) summary statistics leads to incompatible conditionals and thus jeopardise the convergence of the sampler. When thinking a wee bit more about the case treated by Kousathanas et al., I am actually uncertain about the validation of the sampler. When tolerance is equal to zero, this is not an issue as it reproduces the regular Gibbs sampler. Otherwise, each conditional ABC step amounts to introducing an auxiliary variable represented by the simulated summary statistic. Since the distribution of this summary statistic depends on more than the parameter for which it is sufficient, in general, it should also appear in the conditional distribution of other parameters. At least from this Gibbs perspective, it thus relies on incompatible conditionals, which makes the conditions proposed in our own paper the more relevant.

on Dutch book arguments

Posted in Books, Kids, pictures, Statistics, Travel, University life with tags , , , , , , , , , on May 1, 2017 by xi'an

“Reality is not always probable, or likely.”― Jorge Luis Borges

As I am supposed to discuss Teddy Seidenfeld‘s talk at the Bayes, Fiducial and Frequentist conference in Harvard today [the snow happened last time!], I started last week [while driving to Wales] reading some related papers of his. Which is great as I had never managed to get through the Dutch book arguments, including those in Jim’s book.

The paper by Mark Schervish, Teddy Seidenfeld, and Jay Kadane is defining coherence as the inability to bet against the predictive statements based on the procedure. A definition that sounds like a self-fulfilling prophecy to me as it involves a probability measure over the parameter space. Furthermore, the notion of turning inference, which aims at scientific validation, into a leisure, no-added-value, and somewhat ethically dodgy like gambling, does not agree with my notion of a validation for a theory. That is, not as a compelling reason for adopting a Bayesian approach. Not that I have suddenly switched to the other [darker] side, but I do not feel those arguments helping in any way, because of this dodgy image associated with gambling. (Pardon my French, but each time I read about escrows, I think of escrocs, or crooks, which reinforces this image! Actually, this name derives from the Old French escroue, but the modern meaning of écroué is sent to jail, which brings us back to the same feeling…)

Furthermore, it sounds like both a weak notion, since it implies an almost sure loss for the bookmaker, plus coherency holds for any prior distribution, including Dirac masses!, and a frequentist one, in that it looks at all possible values of the parameter (in a statistical framework). It also turns errors into monetary losses, taking them at face value. Which sounds also very formal to me.

But the most fundamental problem I have with this approach is that, from a Bayesian perspective, it does not bring any evaluation or ranking of priors, and in particular does not help in selecting or eliminating some. By behaving like a minimax principle, it does not condition on the data and hence does not evaluate the predictive properties of the model in terms of the data, e.g. by comparing pseudo-data with real data.

 While I see no reason to argue in favour of p-values or minimax decision rules, I am at a loss in understanding the examples in How to not gamble if you must. In the first case, i.e., when dismissing the α-level most powerful test in the simple vs. simple hypothesis testing case, the argument (in Example 4) starts from the classical (Neyman-Pearsonist) statistician favouring the 0.05-level test over others. Which sounds absurd, as this level corresponds to a given loss function, which cannot be compared with another loss function. Even though the authors chose to rephrase the dilemma in terms of a single 0-1 loss function and then turn the classical solution into the choice of an implicit variance-dependent prior. Plus force the poor Pearsonist to make a wager represented by the risk difference. The whole sequence of choices sounds both very convoluted and far away from the usual practice of a classical statistician… Similarly, when attacking [in Section 5.2] the minimax estimator in the Bernoulli case (for the corresponding proper prior depending on the sample size n), this minimax estimator is admissible under quadratic loss and still a Dutch book argument applies, which in my opinion definitely argues against the Dutch book reasoning. The way to produce such a domination result is to mix two Bernoulli estimation problems for two different sample sizes but the same parameter value, in which case there exist [other] choices of Beta priors and a convex combination of the risks functions that lead to this domination. But this example [Example 6] mostly exposes the artificial nature of the argument: when estimating the very same probability θ, what is the relevance of adding the risks or errors resulting from using two estimators for two different sample sizes. Of the very same probability θ. I insist on the very same because when instead estimating two [independent] values of θ, there cannot be a Stein effect for the Bernoulli probability estimation problem, that is, any aggregation of admissible estimators remains admissible. (And yes it definitely sounds like an exercise in frequentist decision theory!)

commentaries in financial econometrics

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on April 27, 2016 by xi'an

My comment(arie)s on the moment approach to Bayesian inference by Ron Gallant have appeared, along with other comment(arie)s:

Invited Article
Reflections on the Probability Space Induced by Moment Conditions with
Implications for Bayesian Inference
A. Ronald Gallant . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Commentaries
Dante Amengual and Enrique Sentana .. . . . . . . . . . 248
John Geweke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253
Jae-Young Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Oliver Linton and Ruochen Wu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261
Christian P. Robert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Christopher A. Sims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Wei Wei and Asger Lunde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .278
Author Response
A. Ronald Gallant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

formula (4) in Gallant's paperWhile commenting on commentaries is formally bound to induce an infinite loop [or l∞p], I remain puzzled by the main point of the paper, which is that setting a structural distribution on a moment function Z(x,θ) plus a prior p(θ) induces a distribution on the pair (x,θ) in a possibly weaker σ-algebra. (The two distributions may actually be incompatible.) Handling this framework requires checking that a posterior exists, which sounds rather unnatural (even though we also have to check properness of the posterior). And the meaning of such a posterior remains unclear, as for instance in this assertion that (4) above is a likelihood, when it does not define a density in x but on the object inside the exponential.

“…it is typically difficult to determine whether there exists a p(x|θ) such that the implied distribution of m(x,θ) is the one stated, and if not, what damage is done thereby” J. Geweke (p.254)

Continue reading

Incoherent phylogeographic inference [accepted]

Posted in Statistics, University life with tags , , , , , on August 30, 2010 by xi'an

The letter we submitted to PNAS about Templeton’s surprising diatribe on Bayesian inference has now been accepted:

Title: “Incoherent Phylogeographic Inference”
Tracking #: 2010-08762
Authors: Berger et al.

Dear Prof. Robert,
We are pleased to inform you that the PNAS Editorial Board has given final approval of your letter to the Editor for online publication. The author(s) of the published manuscript have been invited to respond to your feedback. If they provide a response, it may appear online concurrently with your letter.

Now we are looking forward (?) Alan Templeton’s answer, even though I suspect this short letter is not going to have any impact on his views!