Archive for inconsistent priors

commentaries in financial econometrics

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on April 27, 2016 by xi'an

My comment(arie)s on the moment approach to Bayesian inference by Ron Gallant have appeared, along with other comment(arie)s:

Invited Article
Reflections on the Probability Space Induced by Moment Conditions with
Implications for Bayesian Inference
A. Ronald Gallant . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Commentaries
Dante Amengual and Enrique Sentana .. . . . . . . . . . 248
John Geweke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253
Jae-Young Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Oliver Linton and Ruochen Wu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261
Christian P. Robert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Christopher A. Sims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Wei Wei and Asger Lunde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .278
Author Response
A. Ronald Gallant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

formula (4) in Gallant's paperWhile commenting on commentaries is formally bound to induce an infinite loop [or l∞p], I remain puzzled by the main point of the paper, which is that setting a structural distribution on a moment function Z(x,θ) plus a prior p(θ) induces a distribution on the pair (x,θ) in a possibly weaker σ-algebra. (The two distributions may actually be incompatible.) Handling this framework requires checking that a posterior exists, which sounds rather unnatural (even though we also have to check properness of the posterior). And the meaning of such a posterior remains unclear, as for instance in this assertion that (4) above is a likelihood, when it does not define a density in x but on the object inside the exponential.

“…it is typically difficult to determine whether there exists a p(x|θ) such that the implied distribution of m(x,θ) is the one stated, and if not, what damage is done thereby” J. Geweke (p.254)

Continue reading

Bayesian brittleness

Posted in Statistics with tags , , , , , on May 3, 2013 by xi'an

Here is the abstract of a recently arXived paper that attracted my attention:

Although it is known that Bayesian estimators may be inconsistent if the model is misspecified, it is also a popular belief that a “good” or “close” enough model should have good convergence properties. This paper shows that, contrary to popular belief, there is no such thing as a “close enough” model in Bayesian inference in the following sense: we derive optimal lower and upper bounds on posterior values obtained from models that exactly capture an arbitrarily large number of finite-dimensional marginals of the data-generating distribution and/or that are arbitrarily close to the data-generating distribution in the Prokhorov or total variation metrics; these bounds show that such models may still make the largest possible prediction error after conditioning on an arbitrarily large number of sample data. Therefore, under model misspecification, and without stronger assumptions than (arbitrary) closeness in Prokhorov or total variation metrics, Bayesian inference offers no better guarantee of accuracy than arbitrarily picking a value between the essential infimum and supremum of the quantity of interest. In particular, an unscrupulous practitioner could slightly perturb a given prior and model to achieve any desired posterior conclusions.ink

The paper is both too long and too theoretical for me to get into it deep enough. The main point however is that, given the space of all possible measures, the set of (parametric) Bayes inferences constitutes a tiny finite-dimensional set that may lie far far away from the true model. I do not find the result unreasonable, far from it!, but the fact that Bayesian (and other) inferences may be inconsistent for most misspecified models is not such a major issue in my opinion. (Witness my post on the Robins-Wasserman paradox.) I am not so much convinced either about this “popular belief that a “good” or “close” enough model should have good convergence properties”, as it is intuitively reasonable that the immensity of the space of all models can induce non-convergent behaviours. The statistical question is rather what can be done about it. Does it matter that the model is misspecified? If it does, is there any meaning in estimating parameters without a model? For a finite sample size, should we at all bother that the model is not “right” or “close enough” if discrepancies cannot be detected at this precision level? I think the answer to all those questions is negative and that we should proceed with our imperfect models and imperfect inference as long as our imperfect simulation tools do not exhibit strong divergences.

Bayesian non-parametrics

Posted in Statistics with tags , , , , , , , , , , , on April 8, 2013 by xi'an

Here is a short discussion I wrote yesterday with Judith Rousseau of a paper by Peter Müller and Riten Mitra to appear in Bayesian Analysis.

“We congratulate the authors for this very pleasant overview of the type of problems that are currently tackled by Bayesian nonparametric inference and for demonstrating how prolific this field has become. We do share the authors viewpoint that many Bayesian nonparametric models allow for more flexible modelling than parametric models and thus capture finer details of the data. BNP can be a good alternative to complex parametric models in the sense that the computations are not necessarily more difficult in Bayesian nonparametric models. However we would like to mitigate the enthusiasm of the authors since, although we believe that Bayesian nonparametric has proved extremely useful and interesting, we think they oversell the “nonparametric side of the Force”! Our main point is that by definition, Bayesian nonparametric is based on prior probabilities that live on infinite dimensional spaces and thus are never completely swamped by the data. It is therefore crucial to understand which (or why!) aspects of the model are strongly influenced by the prior and how.

As an illustration, when looking at Example 1 with the censored zeroth cell, our reaction is that this is a problem with no proper solution, because it is lacking too much information. In other words, unless some parametric structure of the model is known, in which case the zeroth cell is related with the other cells, we see no way to infer about the size of this cell. The outcome produced by the authors is therefore unconvincing to us in that it seems to only reflect upon the prior modelling (α,G*) and not upon the information contained in the data. Now, this prior modelling may be to some extent justified based on side information about the medical phenomenon under study, however its impact on the resulting inference is palatable.

Recently (and even less recently) a few theoretical results have pointed out this very issue. E.g., Diaconis and Freedman (1986) showed that some priors could surprisingly lead to inconsistent posteriors, even though it was later shown that many priors lead to consistent posteriors and often even to optimal asymptotic frequentist estimators, see for instance van der Vaart and van Zanten (2009) and Kruijer et al. (2010). The worry about Bayesian nonparametrics truly appeared when considering (1) asymptotic frequentist properties of semi-parametric procedures; and (2) interpretation of inferential aspects of Bayesian nonparametric procedures. It was shown in various instances that some nonparametric priors which behaved very nicely for the estimation of the whole parameter could have disturbingly suboptimal behaviour for some specific functionals of interest, see for instance Arbel et al. (2013) and Rivoirard and Rousseau (2012). We do not claim here that asymptotics is the answer to everything however bad asymptotic behaviour shows that something wrong is going on and this helps understanding the impact of the prior. These disturbing bad results are an illustration that in these infinite dimensional models the impact of the prior modelling is difficult to evaluate and that although the prior looks very flexible it can in fact be highly informative and/or restrictive for some aspects of the parameter. It would thus be wrong to conclude that every aspect of the parameter is well-recovered because some are. It has been a well-known fact for Bayesian parametric models, leading to extensive research on reference and other types of objective priors. It is even more crucial in the nonparametric world. No (nonparametric) prior can be suited for every inferential aspect and it is important to understand which aspects of the parameter are well-recovered and which ones are not.

We also concur with the authors that Dirichlet mixture priors provide natural clustering mechanisms, but one may question the “natural” label as the resulting clustering is quite unstructured, growing in the number of clusters as the number of observations increases and not incorporating any prior constraint on the “definition” of a cluster, except the one implicit and well-hidden behind the non-parametric prior. In short, it is delicate to assess what is eventually estimated by this clustering methods.

These remarks are not to be taken criticisms of the overall Bayesian nonparametric approach, just the contrary. We simply emphasize (or recall) that there is no such thing as a free lunch and that we need to post the price to pay for potential customers. In these models, this is far from easy and just as far from being completed.”

References

  • Arbel, J., Gayraud, G., and Rousseau, J. (2013). Bayesian adaptive optimal estimation using a sieve prior. Scandinavian Journal of Statistics, to appear.

  • Diaconis, P. and Freedman, D. (1986). On the consistency of Bayes estimates. Ann. Statist., 14:1-26.

  • Kruijer, W., Rousseau, J., and van der Vaart, A. (2010). Adaptive Bayesian density estimation with location-scale mixtures. Electron. J. Stat., 4:1225-1257.

  • Rivoirard, V. and Rousseau, J. (2012). On the Bernstein Von Mises theorem for linear functionals of the density. Ann. Statist., 40:1489-1523.

  • van der Vaart, A. and van Zanten, J. H. (2009). Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwidth. Ann. Statist., 37:2655-2675.