Archive for industrial ruins

CRAN does not validate R packages!

Posted in pictures, R, University life with tags , , , , , , , , , , on July 10, 2019 by xi'an

A friend called me the other day for advice on how to submit an R package to CRAN along with a proof his method was mathematically sound. I replied with some items of advice taken from my (limited) experience with submitting packages. And with the remark that CRAN would not validate the mathematical contents of the associated package manual. Nor even the validity of the R code towards delivering the right outcome as stated in the manual. This shocked him quite seriously as he thought having a package accepted by CRAN was a stamp of validation of both the method and the R code. It would be nice of course but would require so much manpower that it seems unrealistic. Some middle ground is to aim at a journal or a peer community validation where both code and methods are vetted. Which happens for instance with the Journal of Computational and Graphical Statistics. Or the Journal of Statistical Software (which should revise its instructions to authors that states “The majority of software published in JSS is written in S, MATLAB, SAS/IML, C++, or Java”. S, really?!)

As for the validity of the latest release of R (currently R-3.6.1 which came out on 2019-07-05, named Action of the Toes!), I figure the bazillion R programs currently running should be able to detect any defect pretty fast, although awareness of the incredible failure of sample() reported in an earlier post took a while to appear.

robust Bayesian synthetic likelihood

Posted in Statistics with tags , , , , , , , , , , , , , on May 16, 2019 by xi'an

David Frazier (Monash University) and Chris Drovandi (QUT) have recently come up with a robustness study of Bayesian synthetic likelihood that somehow mirrors our own work with David. In a sense, Bayesian synthetic likelihood is definitely misspecified from the start in assuming a Normal distribution on the summary statistics. When the data generating process is misspecified, even were the Normal distribution the “true” model or an appropriately converging pseudo-likelihood, the simulation based evaluation of the first two moments of the Normal is biased. Of course, for a choice of a summary statistic with limited information, the model can still be weakly compatible with the data in that there exists a pseudo-true value of the parameter θ⁰ for which the synthetic mean μ(θ⁰) is the mean of the statistics. (Sorry if this explanation of mine sounds unclear!) Or rather the Monte Carlo estimate of μ(θ⁰) coincidences with that mean.The same Normal toy example as in our paper leads to very poor performances in the MCMC exploration of the (unsympathetic) synthetic target. The robustification of the approach as proposed in the paper is to bring in an extra parameter to correct for the bias in the mean, using an additional Laplace prior on the bias to aim at sparsity. Or the same for the variance matrix towards inflating it. This over-parameterisation of the model obviously avoids the MCMC to get stuck (when implementing a random walk Metropolis with the target as a scale).

art brut

Posted in pictures, Travel with tags , , , , , , on September 2, 2012 by xi'an

art brut

Posted in pictures, Travel with tags , , , , on August 5, 2012 by xi'an

art brut

Posted in pictures, Travel with tags , , , on February 12, 2012 by xi'an