**A** great Bayesian Analysis webinar this afternoon with well-balanced presentations by Steve MacEachern and John Lewis, and original discussions by Bertrand Clarke and Fabrizio Rugieri. Which attracted 122 participants. I particularly enjoyed Bertrand’s points that likelihoods were more general than models [made in 6 different wordings!] and that this paper was closer to the M-open perspective. I think I eventually got the reason why the approach could be seen as an ABC with ε=0, since the simulated y’s all get the right statistic, but this presentation does not bring a strong argument in favour of the restricted likelihood approach, when considering the methodological and computational effort. The discussion also made me wonder if tools like VAEs could be used towards approximating the distribution of T(y) conditional on the parameter θ. This is also an opportunity to thank my friend Michele Guindani for his hard work as Editor of Bayesian Analysis and in particular for keeping the discussion tradition thriving!

## Archive for insufficiency

## BA webinar with discussion

Posted in Statistics with tags #BAjournal, ABC, Bayesian Analysis, conditional sampling, discussion, insufficiency, MCMC, restricted likelihood, webinar on February 8, 2022 by xi'an## conditioning on insufficient statistics in Bayesian regression

Posted in Books, Statistics, University life with tags ABC, Andrei Kolmogorov, Bayesian Analysis, Borel-Kolmogorov paradox, conditioning, Darjeeling tea, empirical likelihood, Henri Poincaré, insufficiency, measure theory, misspecified model, PNAS, summary statistics on October 23, 2021 by xi'an

“…the prior distribution, the loss function, and the likelihood or sampling density (…) a healthy skepticism encourages us to question each of them”

**A** paper by John Lewis, Steven MacEachern, and Yoonkyung Lee has recently appeared in Bayesian Analysis. Starting with the great motivation of a misspecified model requiring the use of a (thus necessarily) insufficient statistic and moving to their central concern of simulating the posterior based on that statistic.

Model misspecification remains understudied from a B perspective and this paper is thus most welcome in addressing the issue. However, when reading through, one of my criticisms is in defining misspecification as equivalent to outliers in the sample. An outlier model is an easy case of misspecification, in the end, since the original model remains meaningful. (Why should there be “good” versus “bad” data) Furthermore, adding a non-parametric component for the unspecified part of the data would sound like a “more Bayesian” alternative. Unrelated, I also idly wondered at whether or not normalising flows could be used in this instance..

The problem in selecting a T (Darjeeling of course!) is not really discussed there, while each choice of a statistic T leads to a different signification to what misspecified means and suggests a comparison with Bayesian empirical likelihood.

“Acceptance rates of this [ABC] algorithm can be intolerably low”

Erm, this is not really the issue with ABC, is it?! Especially when the tolerance is induced by the simulations themselves.

When I reached the MCMC (Gibbs?) part of the paper, I first wondered at its relevance for the mispecification issues before realising it had become the focus of the paper. Now, simulating the observations conditional on a value of the summary statistic T is a true challenge. I remember for instance George Casella mentioning it in association with a Student’s t sample in the 1990’s and Kerrie and I having an unsuccessful attempt at it in the same period. Persi Diaconis has written several papers on the problem and I am thus surprised at the dearth of references here, like the rather recent Byrne and Girolami (2013), Florens and Simoni (2015), or Bornn et al. (2019). In the present case, the linear model assumed as the true model has the exceptional feature that it leads to a feasible transform of an unconstrained simulation into a simulation with fixed statistics, with no measure theoretic worries if not free from considerable efforts to establish the operation is truly valid… And, while simulating (θ,y) makes perfect sense in an insufficient setting, the cost is then precisely the same as when running a vanilla ABC. Which brings us to the natural comparison with ABC. While taking ε=0 may sound as optimal for being “exact”, it is not from an ABC perspective since the convergence rate of the (summary) statistic should be roughly the one of the tolerance (Fearnhead and Liu, Frazier et al., 2018).

“[The Borel Paradox] shows that the concept of a conditional probability withregard to an isolated given hypothesis whose probability equals 0 is inadmissible.”A. Колмого́ров (1933)

As a side note for measure-theoretic purists, the derivation of the conditional of y given T(y)=T⁰ is arbitrary since the event has probability zero (ie, the conditioning set is of measure zero). See the Borel-Kolmogorov paradox. The computations in the paper are undoubtedly correct, but this is only one arbitrary choice of a transform (or conditioning σ-algebra).

## A precursor of ABC-Gibbs

Posted in Books, R, Statistics with tags ABC, ABC-Gibbs, compatible conditional distributions, Genetics, Gibbs sampler, high dimensions, incoherent inference, incompatible conditionals, insufficiency, likelihood-free methods, sufficient statistics on June 7, 2019 by xi'an**F**ollowing our arXival of ABC-Gibbs, Dennis Prangle pointed out to us a 2016 paper by Athanasios Kousathanas, Christoph Leuenberger, Jonas Helfer, Mathieu Quinodoz, Matthieu Foll, and Daniel Wegmann, Likelihood-Free Inference in High-Dimensional Model, published in Genetics, Vol. 203, 893–904 in June 2016. This paper contains a version of ABC Gibbs where parameters are sequentially simulated from conditionals that depend on the data only through small dimension conditionally sufficient statistics. I had actually blogged about this paper in 2015 but since then completely forgotten about it. (The comments I had made at the time still hold, already pertaining to the coherence or lack thereof of the sampler. I had also forgotten I had run an experiment of an exact Gibbs sampler with incoherent conditionals, which then seemed to converge to something, if not the exact posterior.)

All ABC algorithms, including ABC-PaSS introduced here, require that statistics are sufficient for estimating the parameters of a given model. As mentioned above, parameter-wise sufficient statistics as required by ABC-PaSS are trivial to find for distributions of the exponential family. Since many population genetics models do not follow such distributions, sufficient statistics are known for the most simple models only. For more realistic models involving multiple populations or population size changes, only approximately-sufficient statistics can be found.

While Gibbs sampling is not mentioned in the paper, this is indeed a form of ABC-Gibbs, with the advantage of not facing convergence issues thanks to the sufficiency. The drawback being that this setting is restricted to exponential families and hence difficult to extrapolate to non-exponential distributions, as using almost-sufficient (or not) summary statistics leads to incompatible conditionals and thus jeopardise the convergence of the sampler. When thinking a wee bit more about the case treated by Kousathanas et al., I am actually uncertain about the validation of the sampler. When tolerance is equal to zero, this is not an issue as it reproduces the regular Gibbs sampler. Otherwise, each conditional ABC step amounts to introducing an auxiliary variable represented by the simulated summary statistic. Since the distribution of this summary statistic depends on more than the parameter for which it is sufficient, in general, it should also appear in the conditional distribution of other parameters. At least from this Gibbs perspective, it thus relies on incompatible conditionals, which makes the conditions proposed in our own paper the more relevant.

## analysing statistical and computational trade-off of estimation procedures

Posted in Books, pictures, Statistics, University life with tags ABC, computing cost, efficiency, Harvard University, insufficiency, limited resources, multi-armed bandits on July 8, 2015 by xi'an

“The collection of estimates may be determined by questions such as: How much storage isavailable? Can all the data be kept in memory or only a subset? How much processingpower is available? Are there parallel or distributed systems that can be exploited?”

**D**aniel Sussman, Alexander Volfovsky, and Edoardo Airoldi from Harvard wrote a very interesting paper about setting a balance between statistical efficiency and computational efficiency, a theme that resonates with our recent work on ABC and older considerations about the efficiency of Monte Carlo algorithms. While the paper avoids drifting towards computer science even with a notion like *algorithmic complexity*, I like the introduction of a loss function in the comparison game, even though the way to combine both dimensions is unclear. And may limit the exercise to an intellectual game. In an ideal setting one would set the computational time, like *“I have one hour to get this estimate”*, and compare risks under that that computing constraint. Possibly dumping some observations from the sample to satisfy the constraint. Ideally. Which is why this also reminds me of ABC: given an intractable likelihood, one starts by throwing away some data precision by using a tolerance ε and usually more through an insufficient statistic. Hence ABC procedures could also be compared in such terms.

In the current paper, the authors only compare schemes of breaking the sample into bits to handle each observation only once. Meaning it cannot be used in both the empirical mean and the empirical variance. This sounds a bit contrived in that the optimum allocation depends on the value of the parameter the procedure attempts to estimate. Still, it could lead to a new form of bandit problems: given a bandit with as many arms as there are parameters, at each new observation, decide on the allocation towards minimising the overall risk. (There is a missing sentence at the end of Section 4.)

Any direction for turning those considerations into a practical decision machine would be fantastic, although the difficulties are formidable, from deciding between estimators and selecting a class of estimators, to computing costs and risks depending on unknown parameters.