## another wrong entry

Posted in Books, Kids, R, Statistics, University life with tags , , , , , , on June 27, 2016 by xi'an  Quite a coincidence! I just came across another bug in Lynch’s (2007) book, Introduction to Applied Bayesian Statistics and Estimation for Social Scientists. Already discussed here and on X validated. While working with one participant to the post-ISBA softshop, we were looking for efficient approaches to simulating correlation matrices and came [by Google] across the above R code associated with a 3×3 correlation matrix, which misses the additional constraint that the determinant must be positive. As shown e.g. by the example

> eigen(matrix(c(1,-.8,.7,-.8,1,.6,.7,.6,1),ncol=3))
\$values
 1.8169834 1.5861960 -0.4031794


having all correlations between -1 and 1 is not enough. Just. Not. Enough.

## the worst possible proof [X’ed]

Posted in Books, Kids, Statistics, University life with tags , , , , , , on July 18, 2015 by xi'an  Another surreal experience thanks to X validated! A user of the forum recently asked for an explanation of the above proof in Lynch’s (2007) book, Introduction to Applied Bayesian Statistics and Estimation for Social Scientists. No wonder this user was puzzled: the explanation makes no sense outside the univariate case… It is hard to fathom why on Earth the author would resort to this convoluted approach to conclude about the posterior conditional distribution being a normal centred at the least square estimate and with σ²X’X as precision matrix. Presumably, he has a poor opinion of the degree of matrix algebra numeracy of his readers [and thus should abstain from establishing the result]. As it seems unrealistic to postulate that the author is himself confused about matrix algebra, given his MSc in Statistics [the footnote ² seen above after “appropriately” acknowledges that “technically we cannot divide by” the matrix, but it goes on to suggest multiplying the numerator by the matrix $(X^\text{T}X)^{-1} (X^\text{T}X)$

which does not make sense either, unless one introduces the trace tr(.) operator, presumably out of reach for most readers]. And this part of the explanation is unnecessarily confusing in that a basic matrix manipulation leads to the result. Or even simpler, a reference to Pythagoras’  theorem.

## anti-séche

Posted in Kids, pictures, University life with tags , , , , on December 21, 2014 by xi'an

## Bayes’ Rule [book review]

Posted in Books, Statistics, University life with tags , , , , , , , , , , on July 10, 2014 by xi'an

This introduction to Bayesian Analysis, Bayes’ Rule, was written by James Stone from the University of Sheffield, who contacted CHANCE suggesting a review of his book. I thus bought it from amazon to check the contents. And write a review.

First, the format of the book. It is a short paper of 127 pages, plus 40 pages of glossary, appendices, references and index. I eventually found the name of the publisher, Sebtel Press, but for a while thought the book was self-produced. While the LaTeX output is fine and the (Matlab) graphs readable, pictures are not of the best quality and the display editing is minimal in that there are several huge white spaces between pages. Nothing major there, obviously, it simply makes the book look like course notes, but this is in no way detrimental to its potential appeal. (I will not comment on the numerous appearances of Bayes’ alleged portrait in the book.)

“… (on average) the adjusted value θMAP is more accurate than θMLE.” (p.82)

Bayes’ Rule has the interesting feature that, in the very first chapter, after spending a rather long time on Bayes’ formula, it introduces Bayes factors (p.15).  With the somewhat confusing choice of calling the prior probabilities of hypotheses marginal probabilities. Even though they are indeed marginal given the joint, marginal is usually reserved for the sample, as in marginal likelihood. Before returning to more (binary) applications of Bayes’ formula for the rest of the chapter. The second chapter is about probability theory, which means here introducing the three axioms of probability and discussing geometric interpretations of those axioms and Bayes’ rule. Chapter 3 moves to the case of discrete random variables with more than two values, i.e. contingency tables, on which the range of probability distributions is (re-)defined and produces a new entry to Bayes’ rule. And to the MAP. Given this pattern, it is not surprising that Chapter 4 does the same for continuous parameters. The parameter of a coin flip.  This allows for discussion of uniform and reference priors. Including maximum entropy priors à la Jaynes. And bootstrap samples presented as approximating the posterior distribution under the “fairest prior”. And even two pages on standard loss functions. This chapter is followed by a short chapter dedicated to estimating a normal mean, then another short one on exploring the notion of a continuous joint (Gaussian) density.

“To some people the word Bayesian is like a red rag to a bull.” (p.119)

Bayes’ Rule concludes with a chapter entitled Bayesian wars. A rather surprising choice, given the intended audience. Which is rather bound to confuse this audience… The first part is about probabilistic ways of representing information, leading to subjective probability. The discussion goes on for a few pages to justify the use of priors but I find completely unfair the argument that because Bayes’ rule is a mathematical theorem, it “has been proven to be true”. It is indeed a maths theorem, however that does not imply that any inference based on this theorem is correct!  (A surprising parallel is Kadane’s Principles of Uncertainty with its anti-objective final chapter.)

All in all, I remain puzzled after reading Bayes’ Rule. Puzzled by the intended audience, as contrary to other books I recently reviewed, the author does not shy away from mathematical notations and concepts, even though he proceeds quite gently through the basics of probability. Therefore, potential readers need some modicum of mathematical background that some students may miss (although it actually corresponds to what my kids would have learned in high school). It could thus constitute a soft entry to Bayesian concepts, before taking a formal course on Bayesian analysis. Hence doing no harm to the perception of the field.

## straightforward statistics [book review]

Posted in Books, Kids, Statistics, University life with tags , , , , , , , on July 3, 2014 by xi'an

“I took two different statistics courses as an undergraduate psychology major [and] four different advanced statistics classes as a PhD student.” G. Geher Straightforward Statistics: Understanding the Tools of Research by Glenn Geher and Sara Hall is an introductory textbook for psychology and other social science students. (That Oxford University Press sent me for review in CHANCE. Nice cover, by the way!) I can spot the purpose behind the title, purpose heavily stressed anew in the preface and the first chapter, but it nonetheless irks me as conveying the message that one semester of reasonable diligence in class will suffice to any college students to “not only understanding research findings from psychology, but also to uncovering new truths about the world and our place in it” (p.9). Nothing less. While, in essence, it covers the basics found in all introductory textbooks, from descriptive statistics to ANOVA models. The inclusion of “real research examples” in the chapters of the book rather demonstrates how far from real research a reader of the book would stand… Continue reading