Archive for JAGS

efficiency of normalising over discrete parameters

Posted in Statistics with tags , , , , , , , , , on May 1, 2022 by xi'an

Yesterday, I noticed a new arXival entitled Investigating the efficiency of marginalising over discrete parameters in Bayesian computations written by Wen Wang and coauthors. The paper is actually comparing the simulation of a Gibbs sampler with an Hamiltonian Monte Carlo approach on Gaussian mixtures, when including and excluding latent variables, respectively. The authors missed the opposite marginalisation when the parameters are integrated.

While marginalisation requires substantial mathematical effort, folk wisdom in the Stan community suggests that fitting models with marginalisation is more efficient than using Gibbs sampling.

The comparison is purely experimental, though, which means it depends on the simulated data, the sample size, the prior selection, and of course the chosen algorithms. It also involves the [mostly] automated [off-the-shelf] choices made in the adopted software, JAGS and Stan. The outcome is only evaluated through ESS and the (old) R statistic. Which all depend on the parameterisation. But evacuates the label switching problem by imposing an ordering on the Gaussian means, which may have a different impact on marginalised and unmarginalised models. All in all, there is not much one can conclude about this experiment since the parameter values beyond the simulated data seem to impact the performances much more than the type of algorithm one implements.

probability that a vaccinated person is shielded from COVID-19?

Posted in Books, Statistics, Travel, University life with tags , , , , , , , , , , , , on March 10, 2021 by xi'an

Over my flight to Montpellier last week, I read an arXival on a Bayesian analysis of the vaccine efficiency. Whose full title is “What is the probability that a vaccinated person is shielded from Covid-19? A Bayesian MCMC based reanalysis of published data with emphasis on what should be reported as `efficacy'”, by Giulio D’Agostini and Alfredo Esposito. In short I was not particularly impressed.

“But the real point we wish to highlight, given the spread of distributions, is that we do not have enough data for drawing sound conclusion.”

The reason for this lack of enthusiasm on my side is that, while the authors’ criticism of an excessive precision in Pfizer, Moderna, or AstraZeneca press releases is appropriate, given the published confidence intervals are not claiming the same precision, a Bayesian reanalysis of the published outcome of their respective vaccine trial outcomes does not show much, simply because there is awfully little data, essentially two to four Binomial-like outcomes. Without further data, the modelling is one of a simple graph of Binomial observations, with two or three probability parameters, which results in a very standard Bayesian analysis that does depend on the modelling choices being made, from a highly unrealistic assumption of homogeneity throughout the population(s) tested for the vaccine(s), to a lack of hyperparameters that could have been shared between vaccinated populations. Parts of the arXival are unrelated and unnecessary, like the highly detailed MCMC algorithm for simulating the posterior (incl. JAGS code) to the reminiscence of Bayes’ and Laplace’s early rendering of inverse probability. (I find both interesting and revealing that arXiv, just like medRxiv, posts a warning on top of COVID related preprints.)

Probability and Bayesian modeling [book review]

Posted in Books, Kids, R, Statistics, University life with tags , , , , , , , , , , , , , , , , , on March 26, 2020 by xi'an

Probability and Bayesian modeling is a textbook by Jim Albert [whose reply is included at the end of this entry] and Jingchen Hu that CRC Press sent me for review in CHANCE. (The book is also freely available in bookdown format.) The level of the textbook is definitely most introductory as it dedicates its first half on probability concepts (with no measure theory involved), meaning mostly focusing on counting and finite sample space models. The second half moves to Bayesian inference(s) with a strong reliance on JAGS for the processing of more realistic models. And R vignettes for the simplest cases (where I discovered R commands I ignored, like dplyr::mutate()!).

As a preliminary warning about my biases, I am always reserved at mixing introductions to probability theory and to (Bayesian) statistics in the same book, as I feel they should be separated to avoid confusion. As for instance between histograms and densities, or between (theoretical) expectation and (empirical) mean. I therefore fail to relate to the pace and tone adopted in the book which, in my opinion, seems to dally on overly simple examples [far too often concerned with food or baseball] while skipping over the concepts and background theory. For instance, introducing the concept of subjective probability as early as page 6 is laudable but I doubt it will engage fresh readers when describing it as a measurement of one’s “belief about the truth of an event”, then stressing that “make any kind of measurement, one needs a tool like a scale or ruler”. Overall, I have no particularly focused criticisms on the probability part except for the discrete vs continuous imbalance. (With the Poisson distribution not covered in the Discrete Distributions chapter. And the “bell curve” making a weird and unrigorous appearance there.) Galton’s board (no mention found of quincunx) could have been better exploited towards the physical definition of a prior, following Steve Stiegler’s analysis, by adding a second level. Or turned into an R coding exercise. In the continuous distributions chapter, I would have seen the cdf coming first to the pdf, rather than the opposite. And disliked the notion that a Normal distribution was supported by an histogram of (marathon) running times, i.e. values lower bounded by 122 (at the moment). Or later (in Chapter 8) for Roger Federer’s serving times. Incidentally, a fun typo on p.191, at least fun for LaTeX users, as

f_{Y\ mid X}

with an extra space between `\’ and `mid’! (I also noticed several occurrences of the unvoidable “the the” typo in the last chapters.) The simulation from a bivariate Normal distribution hidden behind a customised R function sim_binom() when it could have been easily described as a two-stage hierarchy. And no comment on the fact that a sample from Y-1.5X could be directly derived from the joint sample. (Too unconscious a statistician?)

When moving to Bayesian inference, a large section is spent on very simple models like estimating a proportion or a mean, covering both discrete and continuous priors. And strongly focusing on conjugate priors despite giving warnings that they do not necessarily reflect prior information or prior belief. With some debatable recommendation for “large” prior variances as weakly informative or (worse) for Exp(1) as a reference prior for sample precision in the linear model (p.415). But also covering Bayesian model checking either via prior predictive (hence Bayes factors) or posterior predictive (with no mention of using the data twice). A very marginalia in introducing a sufficient statistic for the Normal model. In the Normal model checking section, an estimate of the posterior density of the mean is used without (apparent) explanation.

“It is interesting to note the strong negative correlation in these parameters. If one assigned informative independent priors on and , these prior beliefs would be counter to the correlation between the two parameters observed in the data.”

For the same reasons of having to cut on mathematical validation and rigour, Chapter 9 on MCMC is not explaining why MCMC algorithms are converging outside of the finite state space case. The proposal in the algorithmic representation is chosen as a Uniform one, since larger dimension problems are handled by either Gibbs or JAGS. The recommendations about running MCMC do not include how many iterations one “should” run (or other common queries on Stack eXchange), albeit they do include the sensible running multiple chains and comparing simulated predictive samples with the actual data as a  model check. However, the MCMC chapter very quickly and inevitably turns into commented JAGS code. Which I presume would require more from the students than just reading the available code. Like JAGS manual. Chapter 10 is mostly a series of examples of Bayesian hierarchical modeling, with illustrations of the shrinkage effect like the one on the book cover. Chapter 11 covers simple linear regression with some mentions of weakly informative priors,  although in a BUGS spirit of using large [enough?!] variances: “If one has little information about the location of a regression parameter, then the choice of the prior guess is not that important and one chooses a large value for the prior standard deviation . So the regression intercept and slope are each assigned a Normal prior with a mean of 0 and standard deviation equal to the large value of 100.” (p.415). Regardless of the scale of y? Standardisation is covered later in the chapter (with the use of the R function scale()) as part of constructing more informative priors, although this sounds more like data-dependent priors to me in the sense that the scale and location are summarily estimated by empirical means from the data. The above quote also strikes me as potentially confusing to the students, as it does not spell at all how to design a joint distribution on the linear regression coefficients that translate the concentration of these coefficients along y̅=β⁰+β¹x̄. Chapter 12 expands the setting to multiple regression and generalised linear models, mostly consisting of examples. It however suggests using cross-validation for model checking and then advocates DIC (deviance information criterion) as “to approximate a model’s out-of-sample predictive performance” (p.463). If only because it is covered in JAGS, the definition of the criterion being relegated to the last page of the book. Chapter 13 concludes with two case studies, the (often used) Federalist Papers analysis and a baseball career hierarchical model. Which may sound far-reaching considering the modest prerequisites the book started with.

In conclusion of this rambling [lazy Sunday] review, this is not a textbook I would have the opportunity to use in Paris-Dauphine but I can easily conceive its adoption for students with limited maths exposure. As such it offers a decent entry to the use of Bayesian modelling, supported by a specific software (JAGS), and rightly stresses the call to model checking and comparison with pseudo-observations. Provided the course is reinforced with a fair amount of computer labs and projects, the book can indeed achieve to properly introduce students to Bayesian thinking. Hopefully leading them to seek more advanced courses on the topic.

Update: Jim Albert sent me the following precisions after this review got on-line:

Thanks for your review of our recent book.  We had a particular audience in mind, specifically undergraduate American students with some calculus background who are taking their first course in probability and statistics.  The traditional approach (which I took many years ago) teaches some probability one semester and then traditional inference (focusing on unbiasedness, sampling distributions, tests and confidence intervals) in the second semester.  There didn’t appear to be any Bayesian books at that calculus-based undergraduate level and that motivated the writing of this book.  Anyway, I think your comments were certainly fair and we’ve already made some additions to our errata list based on your comments.
[Disclaimer about potential self-plagiarism: this post or an edited version will eventually appear in my Books Review section in CHANCE. As appropriate for a book about Chance!]

Dutch summer workshops on Bayesian modeling

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , on March 21, 2019 by xi'an

Just received an email about two Bayesian workshops in Amsterdam this summer:

both taking place at the University of Amsterdam. And focussed on Bayesian software.

Computational Bayesian Statistics [book review]

Posted in Books, Statistics with tags , , , , , , , , , , , , , , , , , , , , , , , , , , , , on February 1, 2019 by xi'an

This Cambridge University Press book by M. Antónia Amaral Turkman, Carlos Daniel Paulino, and Peter Müller is an enlarged translation of a set of lecture notes in Portuguese. (Warning: I have known Peter Müller from his PhD years in Purdue University and cannot pretend to perfect objectivity. For one thing, Peter once brought me frozen-solid beer: revenge can also be served cold!) Which reminds me of my 1994 French edition of Méthodes de Monte Carlo par chaînes de Markov, considerably upgraded into Monte Carlo Statistical Methods (1998) thanks to the input of George Casella. (Re-warning: As an author of books on the same topic(s), I can even less pretend to objectivity.)

“The “great idea” behind the development of computational Bayesian statistics is the recognition that Bayesian inference can be implemented by way of simulation from the posterior distribution.”

The book is written from a strong, almost militant, subjective Bayesian perspective (as, e.g., when half-Bayesians are mentioned!). Subjective (and militant) as in Dennis Lindley‘s writings, eminently quoted therein. As well as in Tony O’Hagan‘s. Arguing that the sole notion of a Bayesian estimator is the entire posterior distribution. Unless one brings in a loss function. The book also discusses the Bayes factor in a critical manner, which is fine from my perspective.  (Although the ban on improper priors makes its appearance in a very indirect way at the end of the last exercise of the first chapter.)

Somewhat at odds with the subjectivist stance of the previous chapter, the chapter on prior construction only considers non-informative and conjugate priors. Which, while understandable in an introductory book, is a wee bit disappointing. (When mentioning Jeffreys’ prior in multidimensional settings, the authors allude to using univariate Jeffreys’ rules for the marginal prior distributions, which is not a well-defined concept or else Bernardo’s and Berger’s reference priors would not have been considered.) The chapter also mentions the likelihood principle at the end of the last exercise, without a mention of the debate about its derivation by Birnbaum. Or Deborah Mayo’s recent reassessment of the strong likelihood principle. The following chapter is a sequence of illustrations in classical exponential family models, classical in that it is found in many Bayesian textbooks. (Except for the Poison model found in Exercise 3.3!)

Nothing to complain (!) about the introduction of Monte Carlo methods in the next chapter, especially about the notion of inference by Monte Carlo methods. And the illustration by Bayesian design. The chapter also introduces Rao-Blackwellisation [prior to introducing Gibbs sampling!]. And the simplest form of bridge sampling. (Resuscitating the weighted bootstrap of Gelfand and Smith (1990) may not be particularly urgent for an introduction to the topic.) There is furthermore a section on sequential Monte Carlo, including the Kalman filter and particle filters, in the spirit of Pitt and Shephard (1999). This chapter is thus rather ambitious in the amount of material covered with a mere 25 pages. Consensus Monte Carlo is even mentioned in the exercise section.

“This and other aspects that could be criticized should not prevent one from using this [Bayes factor] method in some contexts, with due caution.”

Chapter 5 turns back to inference with model assessment. Using Bayesian p-values for model assessment. (With an harmonic mean spotted in Example 5.1!, with no warning about the risks, except later in 5.3.2.) And model comparison. Presenting the whole collection of xIC information criteria. from AIC to WAIC, including a criticism of DIC. The chapter feels somewhat inconclusive but methinks this is the right feeling on the current state of the methodology for running inference about the model itself.

“Hint: There is a very easy answer.”

Chapter 6 is also a mostly standard introduction to Metropolis-Hastings algorithms and the Gibbs sampler. (The argument given later of a Metropolis-Hastings algorithm with acceptance probability one does not work.) The Gibbs section also mentions demarginalization as a [latent or auxiliary variable] way to simulate from complex distributions [as we do], but without defining the notion. It also references the precursor paper of Tanner and Wong (1987). The chapter further covers slice sampling and Hamiltonian Monte Carlo, the later with sufficient details to lead to reproducible implementations. Followed by another standard section on convergence assessment, returning to the 1990’s feud of single versus multiple chain(s). The exercise section gets much larger than in earlier chapters with several pages dedicated to most problems. Including one on ABC, maybe not very helpful in this context!

“…dimension padding (…) is essentially all that is to be said about the reversible jump. The rest are details.”

The next chapter is (somewhat logically) the follow-up for trans-dimensional problems and marginal likelihood approximations. Including Chib’s (1995) method [with no warning about potential biases], the spike & slab approach of George and McCulloch (1993) that I remember reading in a café at the University of Wyoming!, the somewhat antiquated MC³ of Madigan and York (1995). And then the much more recent array of Bayesian lasso techniques. The trans-dimensional issues are covered by the pseudo-priors of Carlin and Chib (1995) and the reversible jump MCMC approach of Green (1995), the later being much more widely employed in the literature, albeit difficult to tune [and even to comprehensively describe, as shown by the algorithmic representation in the book] and only recommended for a large number of models under comparison. Once again the exercise section is most detailed, with recent entries like the EM-like variable selection algorithm of Ročková and George (2014).

The book also includes a chapter on analytical approximations, which is also the case in ours [with George Casella] despite my reluctance to bring them next to exact (simulation) methods. The central object is the INLA methodology of Rue et al. (2009) [absent from our book for obvious calendar reasons, although Laplace and saddlepoint approximations are found there as well]. With a reasonable amount of details, although stopping short of implementable reproducibility. Variational Bayes also makes an appearance, mostly following the very recent Blei et al. (2017).

The gem and originality of the book are primarily to be found in the final and ninth chapter where four software are described, all with interfaces to R: OpenBUGS, JAGS, BayesX, and Stan, plus R-INLA which is processed in the second half of the chapter (because this is not a simulation method). As in the remainder of the book, the illustrations are related to medical applications. Worth mentioning is the reminder that BUGS came in parallel with Gelfand and Smith (1990) Gibbs sampler rather than as a consequence. Even though the formalisation of the Markov chain Monte Carlo principle by the later helped in boosting the power of this software. (I also appreciated the mention made of Sylvia Richardson’s role in this story.) Since every software is illustrated in depth with relevant code and output, and even with the shortest possible description of its principle and modus vivendi, the chapter is 60 pages long [and missing a comparative conclusion]. Given my total ignorance of the very existence of the BayesX software, I am wondering at the relevance of its inclusion in this description rather than, say, other general R packages developed by authors of books such as Peter Rossi. The chapter also includes a description of CODA, with an R version developed by Martin Plummer [now a Warwick colleague].

In conclusion, this is a high-quality and all-inclusive introduction to Bayesian statistics and its computational aspects. By comparison, I find it much more ambitious and informative than Albert’s. If somehow less pedagogical than the thicker book of Richard McElreath. (The repeated references to Paulino et al.  (2018) in the text do not strike me as particularly useful given that this other book is written in Portuguese. Unless an English translation is in preparation.)

Disclaimer: this book was sent to me by CUP for endorsement and here is what I wrote in reply for a back-cover entry:

An introduction to computational Bayesian statistics cooked to perfection, with the right mix of ingredients, from the spirited defense of the Bayesian approach, to the description of the tools of the Bayesian trade, to a definitely broad and very much up-to-date presentation of Monte Carlo and Laplace approximation methods, to an helpful description of the most common software. And spiced up with critical perspectives on some common practices and an healthy focus on model assessment and model selection. Highly recommended on the menu of Bayesian textbooks!

And this review is likely to appear in CHANCE, in my book reviews column.

%d bloggers like this: