Archive for John von Neumann

10 great ideas about chance [book preview]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , on November 13, 2017 by xi'an

[As I happened to be a reviewer of this book by Persi Diaconis and Brian Skyrms, I had the opportunity (and privilege!) to go through its earlier version. Here are the [edited] comments I sent back to PUP and the authors about this earlier version. All in  all, a terrific book!!!]

The historical introduction (“measurement”) of this book is most interesting, especially its analogy of chance with length. I would have appreciated a connection earlier than Cardano, like some of the Greek philosophers even though I gladly discovered there that Cardano was not only responsible for the closed form solutions to the third degree equation. I would also have liked to see more comments on the vexing issue of equiprobability: we all spend (if not waste) hours in the classroom explaining to (or arguing with) students why their solution is not correct. And they sometimes never get it! [And we sometimes get it wrong as well..!] Why is such a simple concept so hard to explicit? In short, but this is nothing but a personal choice, I would have made the chapter more conceptual and less chronologically historical.

“Coherence is again a question of consistent evaluations of a betting arrangement that can be implemented in alternative ways.” (p.46)

The second chapter, about Frank Ramsey, is interesting, if only because it puts this “man of genius” back under the spotlight when he has all but been forgotten. (At least in my circles.) And for joining probability and utility together. And for postulating that probability can be derived from expectations rather than the opposite. Even though betting or gambling has a (negative) stigma in many cultures. At least gambling for money, since most of our actions involve some degree of betting. But not in a rational or reasoned manner. (Of course, this is not a mathematical but rather a psychological objection.) Further, the justification through betting is somewhat tautological in that it assumes probabilities are true probabilities from the start. For instance, the Dutch book example on p.39 produces a gain of .2 only if the probabilities are correct.

> gain=rep(0,1e4)
> for (t in 1:1e4){
+ p=rexp(3);p=p/sum(p)
+ gain[t]=(p[1]*(1-.6)+p[2]*(1-.2)+p[3]*(.9-1))/sum(p)}
> hist(gain)

As I made it clear at the BFF4 conference last Spring, I now realise I have never really adhered to the Dutch book argument. This may be why I find the chapter somewhat unbalanced with not enough written on utilities and too much on Dutch books.

“The force of accumulating evidence made it less and less plausible to hold that subjective probability is, in general, approximate psychology.” (p.55)

A chapter on “psychology” may come as a surprise, but I feel a posteriori that it is appropriate. Most of it is about the Allais paradox. Plus entries on Ellesberg’s distinction between risk and uncertainty, with only the former being quantifiable by “objective” probabilities. And on Tversky’s and Kahneman’s distinction between heuristics, and the framing effect, i.e., how the way propositions are expressed impacts the choice of decision makers. However, it is leaving me unclear about the conclusion that the fact that people behave irrationally should not prevent a reliance on utility theory. Unclear because when taking actions involving other actors their potentially irrational choices should also be taken into account. (This is mostly nitpicking.)

“This is Bernoulli’s swindle. Try to make it precise and it falls apart. The conditional probabilities go in different directions, the desired intervals are of different quantities, and the desired probabilities are different probabilities.” (p.66)

The next chapter (“frequency”) is about Bernoulli’s Law of Large numbers and the stabilisation of frequencies, with von Mises making it the basis of his approach to probability. And Birkhoff’s extension which is capital for the development of stochastic processes. And later for MCMC. I like the notions of “disreputable twin” (p.63) and “Bernoulli’s swindle” about the idea that “chance is frequency”. The authors call the identification of probabilities as limits of frequencies Bernoulli‘s swindle, because it cannot handle zero probability events. With a nice link with the testing fallacy of equating rejection of the null with acceptance of the alternative. And an interesting description as to how Venn perceived the fallacy but could not overcome it: “If Venn’s theory appears to be full of holes, it is to his credit that he saw them himself.” The description of von Mises’ Kollectiven [and the welcome intervention of Abraham Wald] clarifies my previous and partial understanding of the notion, although I am unsure it is that clear for all potential readers. I also appreciate the connection with the very notion of randomness which has not yet found I fear a satisfactory definition. This chapter asks more (interesting) questions than it brings answers (to those or others). But enough, this is a brilliant chapter!

“…a random variable, the notion that Kac found mysterious in early expositions of probability theory.” (p.87)

Chapter 5 (“mathematics”) is very important [from my perspective] in that it justifies the necessity to associate measure theory with probability if one wishes to evolve further than urns and dices. To entitle Kolmogorov to posit his axioms of probability. And to define properly conditional probabilities as random variables (as my third students fail to realise). I enjoyed very much reading this chapter, but it may prove difficult to read for readers with no or little background in measure (although some advanced mathematical details have vanished from the published version). Still, this chapter constitutes a strong argument for preserving measure theory courses in graduate programs. As an aside, I find it amazing that mathematicians (even Kac!) had not at first realised the connection between measure theory and probability (p.84), but maybe not so amazing given the difficulty many still have with the notion of conditional probability. (Now, I would have liked to see some description of Borel’s paradox when it is mentioned (p.89).

“Nothing hangs on a flat prior (…) Nothing hangs on a unique quantification of ignorance.” (p.115)

The following chapter (“inverse inference”) is about Thomas Bayes and his posthumous theorem, with an introduction setting the theorem at the centre of the Hume-Price-Bayes triangle. (It is nice that the authors include a picture of the original version of the essay, as the initial title is much more explicit than the published version!) A short coverage, in tune with the fact that Bayes only contributed a twenty-plus paper to the field. And to be logically followed by a second part [formerly another chapter] on Pierre-Simon Laplace, both parts focussing on the selection of prior distributions on the probability of a Binomial (coin tossing) distribution. Emerging into a discussion of the position of statistics within or even outside mathematics. (And the assertion that Fisher was the Einstein of Statistics on p.120 may be disputed by many readers!)

“So it is perfectly legitimate to use Bayes’ mathematics even if we believe that chance does not exist.” (p.124)

The seventh chapter is about Bruno de Finetti with his astounding representation of exchangeable sequences as being mixtures of iid sequences. Defining an implicit prior on the side. While the description sticks to binary events, it gets quickly more advanced with the notion of partial and Markov exchangeability. With the most interesting connection between those exchangeabilities and sufficiency. (I would however disagree with the statement that “Bayes was the father of parametric Bayesian analysis” [p.133] as this is extrapolating too much from the Essay.) My next remark may be non-sensical, but I would have welcomed an entry at the end of the chapter on cases where the exchangeability representation fails, for instance those cases when there is no sufficiency structure to exploit in the model. A bonus to the chapter is a description of Birkhoff’s ergodic theorem “as a generalisation of de Finetti” (p..134-136), plus half a dozen pages of appendices on more technical aspects of de Finetti’s theorem.

“We want random sequences to pass all tests of randomness, with tests being computationally implemented”. (p.151)

The eighth chapter (“algorithmic randomness”) comes (again!) as a surprise as it centres on the character of Per Martin-Löf who is little known in statistics circles. (The chapter starts with a picture of him with the iconic Oberwolfach sculpture in the background.) Martin-Löf’s work concentrates on the notion of randomness, in a mathematical rather than probabilistic sense, and on the algorithmic consequences. I like very much the section on random generators. Including a mention of our old friend RANDU, the 16 planes random generator! This chapter connects with Chapter 4 since von Mises also attempted to define a random sequence. To the point it feels slightly repetitive (for instance Jean Ville is mentioned in rather similar terms in both chapters). Martin-Löf’s central notion is computability, which forces us to visit Turing’s machine. And its role in the undecidability of some logical statements. And Church’s recursive functions. (With a link not exploited here to the notion of probabilistic programming, where one language is actually named Church, after Alonzo Church.) Back to Martin-Löf, (I do not see how his test for randomness can be implemented on a real machine as the whole test requires going through the entire sequence: since this notion connects with von Mises’ Kollektivs, I am missing the point!) And then Kolmororov is brought back with his own notion of complexity (which is also Chaitin’s and Solomonov’s). Overall this is a pretty hard chapter both because of the notions it introduces and because I do not feel it is completely conclusive about the notion(s) of randomness. A side remark about casino hustlers and their “exploitation” of weak random generators: I believe Jeff Rosenthal has a similar if maybe simpler story in his book about Canadian lotteries.

“Does quantum mechanics need a different notion of probability? We think not.” (p.180)

The penultimate chapter is about Boltzmann and the notion of “physical chance”. Or statistical physics. A story that involves Zermelo and Poincaré, And Gibbs, Maxwell and the Ehrenfests. The discussion focus on the definition of probability in a thermodynamic setting, opposing time frequencies to space frequencies. Which requires ergodicity and hence Birkhoff [no surprise, this is about ergodicity!] as well as von Neumann. This reaches a point where conjectures in the theory are yet open. What I always (if presumably naïvely) find fascinating in this topic is the fact that ergodicity operates without requiring randomness. Dynamical systems can enjoy ergodic theorem, while being completely deterministic.) This chapter also discusses quantum mechanics, which main tenet requires probability. Which needs to be defined, from a frequency or a subjective perspective. And the Bernoulli shift that brings us back to random generators. The authors briefly mention the Einstein-Podolsky-Rosen paradox, which sounds more metaphysical than mathematical in my opinion, although they get to great details to explain Bell’s conclusion that quantum theory leads to a mathematical impossibility (but they lost me along the way). Except that we “are left with quantum probabilities” (p.183). And the chapter leaves me still uncertain as to why statistical mechanics carries the label statistical. As it does not seem to involve inference at all.

“If you don’t like calling these ignorance priors on the ground that they may be sharply peaked, call them nondogmatic priors or skeptical priors, because these priors are quite in the spirit of ancient skepticism.” (p.199)

And then the last chapter (“induction”) brings us back to Hume and the 18th Century, where somehow “everything” [including statistics] started! Except that Hume’s strong scepticism (or skepticism) makes induction seemingly impossible. (A perspective with which I agree to some extent, if not to Keynes’ extreme version, when considering for instance financial time series as stationary. And a reason why I do not see the criticisms contained in the Black Swan as pertinent because they savage normality while accepting stationarity.) The chapter rediscusses Bayes’ and Laplace’s contributions to inference as well, challenging Hume’s conclusion of the impossibility to finer. Even though the representation of ignorance is not unique (p.199). And the authors call again for de Finetti’s representation theorem as bypassing the issue of whether or not there is such a thing as chance. And escaping inductive scepticism. (The section about Goodman’s grue hypothesis is somewhat distracting, maybe because I have always found it quite artificial and based on a linguistic pun rather than a logical contradiction.) The part about (Richard) Jeffrey is quite new to me but ends up quite abruptly! Similarly about Popper and his exclusion of induction. From this chapter, I appreciated very much the section on skeptical priors and its analysis from a meta-probabilist perspective.

There is no conclusion to the book, but to end up with a chapter on induction seems quite appropriate. (But there is an appendix as a probability tutorial, mentioning Monte Carlo resolutions. Plus notes on all chapters. And a commented bibliography.) Definitely recommended!

[Disclaimer about potential self-plagiarism: this post or an edited version will eventually appear in my Books Review section in CHANCE. As appropriate for a book about Chance!]

complexity of the von Neumann algorithm

Posted in Statistics with tags , , , , , , , , , on April 3, 2017 by xi'an

“Without the possibility of computing infimum and supremum of the density f over compact subintervals of the domain of f, sampling absolutely continuous distribution using the rejection method seems to be impossible in total generality.”

The von Neumann algorithm is another name for the rejection method introduced by von Neumann circa 1951. It was thus most exciting to spot a paper by Luc Devroye and Claude Gravel appearing in the latest Statistics and Computing. Assessing the method in terms of random bits and precision. Specifically, assuming that the only available random generator is one of random bits, which necessarily leads to an approximation when the target is a continuous density. The authors first propose a bisection algorithm for distributions defined on a compact interval, which compares random bits with recursive bisections of the unit interval and stops when the interval is small enough.

In higher dimension, for densities f over the unit hypercube, they recall that the original algorithm consisted in simulating uniforms x and u over the hypercube and [0,1], using the uniform as the proposal distribution and comparing the density at x, f(x), with the rescaled uniform. When using only random bits, the proposed method is based on a quadtree that subdivides the unit hypercube into smaller and smaller hypercubes until the selected hypercube is entirely above or below the density. And is small enough for the desired precision. This obviously requires for the computation of the upper and lower bound of the density over the hypercubes to be feasible, with Devroye and Gravel considering that this is a necessary property as shown by the above quote. Densities with non-compact support can be re-expressed as densities on the unit hypercube thanks to the cdf transform. (Actually, this is equivalent to the general accept-reject algorithm, based on the associated proposal.)

“With the oracles introduced in our modification of von Neumann’s method, we believe that it is impossible to design a rejection algorithm for densities that are not Riemann-integrable, so the question of the design of a universally valid rejection algorithm under the random bit model remains open.”

In conclusion, I enjoyed very much reading this paper, especially the reflection it proposes on the connection between Riemann integrability and rejection algorithms. (Actually, I cannot think straight away of a simulation algorithm that would handle non-Riemann-integrable densities, apart from nested sampling. Or of significant non-Riemann-integrable densities.)

Sobol’s Monte Carlo

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , on December 10, 2016 by xi'an

OLYMPUS DIGITAL CAMERA

The name of Ilya Sobol is familiar to researchers in quasi-Monte Carlo methods for his Sobol’s sequences. I was thus surprised to find in my office a small book entitled The Monte Carlo Method by this author, which is a translation of his 1968 book in Russian. I have no idea how it reached my office and I went to check with the library of Paris-Dauphine around the corner [of my corridor] whether it had been lost: apparently, the library got rid of it among a collection of old books… Now, having read through this 67 pages book (or booklet as Sobol puts it) makes me somewhat agree with the librarians, in that there is nothing of major relevance in this short introduction. It is quite interesting to go through the book and see the basics of simulation principles and Monte Carlo techniques unfolding, from the inverse cdf principle [established by a rather convoluted proof] to importance sampling, but the amount of information is about equivalent to the Wikipedia entry on the topic. From an historical perspective, it is also captivating to see the efforts to connect physical random generators (such as those based on vacuum tube noise) to shift-register pseudo-random generators created by Sobol in 1958. On a Soviet Strela computer.

While Googling the title of that book could not provide any connection, I found out that a 1994 version had been published under the title of A Primer for the Monte Carlo Method, which is mostly the same as my version, except for a few additional sections on pseudo-random generation, from the congruential method (with a FORTRAN code) to the accept-reject method being then called von Neumann’s instead of Neyman’s, to the notion of constructive dimension of a simulation technique, which amounts to demarginalisation, to quasi-Monte Carlo [for three pages]. A funny side note is that the author notes in the preface that the first translation [now in my office] was published without his permission!

simulation by hand

Posted in Books, Kids, pictures, Statistics, Travel with tags , , , , , , , on November 28, 2016 by xi'an

A rather weird question on X validated this week was about devising a manual way to simulate (a few) normal variates. By manual I presume the author of the question means without resorting to a computer or any other business machine. Now, I do not know of any real phenomenon that is exactly and provably Normal. As analysed in a great philosophy of science paper by Aidan Lyon, the standard explanations for a real phenomenon to be Normal are almost invariably false, even those invoking the Central Limit Theorem. Hence I cannot think of a mechanical device that would directly return Normal generations from a Normal distribution with known parameters. However, since it is possible to simulate by hand Uniform U(0,1) variates [up to a given precision] using a chronometre or a wheel, calls to versions of the Box-Müller algorithm that do not rely on logarithmic or trigonometric functions are feasible, for instance by generating two Exponential variates, x and y, until 2y>(1-x)², x being the output. And generating Exponential variates is easy provided a radioactive material with known half-life is available, along with a Geiger counter. Or, if not, by calling von Neumann’s exponential generator. As detailed in Devroye’s simulation book.

After proposing this solution, I received a comment from the author of the question towards a simpler solution based, e.g., on the Central Limit Theorem. Presumably for simple iid random variables such as coin tosses or dice experiments. While I used the CLT for simulating Normal variables in my very early days [just after programming on punched cards!], I do not think this is a very good or efficient method, as the tails grow very slowly to normality. By comparison, using the same amount of coin tosses to create a sufficient number of binary digits of a Uniform variate produces a computer-precision exact Uniform variate, which can be exploited in Box-Müller-like algorithms to return exact Normal variates… Even by hand if necessary. [For some reason, this question attracted a lot of traffic and an encyclopaedic answer on X validated, despite being borderline to the point of being proposed for closure.]

Гнеде́нко and Forsythe [and e]

Posted in Books, Kids, R, Statistics, University life with tags , , , , , , , , on February 16, 2016 by xi'an

In the wake of my earlier post on the Monte Carlo estimation of e and e⁻¹, after a discussion with my colleague Murray Pollock (Warwick) Gnedenko’s solution, he pointed out another (early) Monte Carlo approximation called Forsythe’s method. That is detailed quite neatly in Luc Devroye’s bible, Non-uniform random variate generation (a free bible!). The idea is to run a sequence of uniform generations until the sequence goes up, i.e., until the latest uniform is larger than the previous one. The expectation of the corresponding stopping rule, N, which is the number of generations the uniform sequence went down continuously is then e, while the probability that N is odd is e⁻¹, most unexpectedly! Forsythe’s method actually aims at a much broader goal, namely simulating from any density of the form g(x) exp{-F(x)}, F taking values in (0,1). This method generalises von Neuman’s exponential generator (see Devroye, p.126) which only requires uniform generations.

gnevsforsThis is absolutely identical to Gnedenko’s approach in that both events have the same 1/n! probability to occur [as pointed out by Gérard Letac in a comment on the previous entry]. (I certainly cannot say whether or not one of the authors was aware of the other’s result: Forsythe generalised von Neumann‘s method around 1972, while Gnedenko published Theory of Probability at least in 1969, but this may be the date of the English translation, I have not been able to find the reference on the Russian wikipedia page…) Running a small R experiment to compare both distributions of N, the above barplot shows that they look quite similar:

n=1e6
use=runif(n)
# Gnedenko's in action:
gest=NULL
i=1
while (i<(n-100)){
sumuse=cumsum(use[i:(i+10)])
if (sumuse[11]<1]) 
  sumuse=cumsum(use[i:(i+100)]) 
j=min((1:length(sumuse))[sumuse>1])
gest=c(gest,j)
i=i+j}
#Forsythe's method:
fest=NULL
i=1
while (i<(n-100)){
sumuse=c(-1,diff(use[i:(i+10)]))
if (max(sumuse)<0]) 
  sumuse=c(-1,diff(use[i:(i+100)])) 
j=min((1:length(sumuse))[sumuse>0])
fest=c(fest,j)
i=i+j}

And the execution times of both approaches [with this rudimentary R code!] are quite close.

Further Bernoulli factories

Posted in R, Statistics with tags , , , , , on June 16, 2011 by xi'an

Yesterday, Andrew Thomas and José Blanchet posted a note on the Bernouilli factory on arXiv. This short paper links with the recent paper of Flegal and Herbei I commented earlier. Considering the special target

f(p) = \min(cp, 1-\epsilon)

Thomas and Blanchet develop an elaborate scheme of cascading envelopes that converge to f from above. Their paper is very clear to read, the connection with the Bernstein polynomials is well-explained, the R code is available, and the ten-fold gain over the Flegal and Herbei version is impressive. However, I feel the note in its current state could be improved into a deeper paper by detailing the extension to other functions than the above, by studying further the associated computing time, and by exhibiting the limitations of the method…

Other recent arXiv postings of interest are

the latter being presumably related with the earlier arXiv description of their R package.

A survey of [the 60’s] Monte Carlo methods

Posted in Books, R, Statistics, University life with tags , , , , , , , on May 17, 2011 by xi'an

“The only good Monte Carlos are the dead Monte Carlos” (Trotter and Tukey, quoted by Halton)

When I presented my [partial] history of MCM methods in Bristol two months ago, at the Julian Besag memorial, Christophe Andrieu mentioned a 1970 SIAM survey by John Halton on A retrospective and prospective survey of the Monte Carlo method. This is a huge paper (62 pages, 251 references) and it brings a useful light on the advances in the 60’s (the paper was written in 1968). From the reference list, it seems John Halton was planning two books on the Monte Carlo method, but a search on google did not show anything. I also discovered in this list that there was a 1954 RSS symposium (Read Paper?) on Monte Carlo methods. Note that there were at least two books on Monte Carlo published at the time, Hammersley and Handscomb’s 1964 Monte Carlo Methods and Scheider’s 1966 Monte Carlo Method. (Hammerlsey appears as a major figure in this survey.) There is a lot of material in this long review and most of the standard methods are listed: control variate, importance sampling, self-normalised simportance sampling, stratified sampling, antithetic variables, simulation by inversion, rejection or demarginalisation. Variance reduction is presented as the motivation for the alternative methods. Very little is said about the use of Monte Carlo methods in statistics (“many of  [the applications] are primitive and artless“)  I was first very surprised to find sequential Monte Carlomentioned as well, but it later appeared this was Monte Carlo methods for sequential problems, in the spirit of Abraham Wald. While the now forgotten EZH method is mentioned as a promising new method (p.11), the survey also contains an introduction to the conditional Monte Carlo method of Trotter and Tukey (1956) [from whom the above and rather puzzling quote is taken] that could relate to the averaging techniques of Kong, McCullagh, Meng, Nicolae and Tan as found in their 2003 Read Paper….

“The search for randomness is evidently futile” (Halton)

A large part of the review is taken by the study of uniform random generators and by the distinction between random, pseudo-random and quasi-random versions. Halton insists very much on the lack of justification in using non-random generators, even though they work well. He even goes further as to warn about bias because even the truly random generators are discrete. The book covers the pseudo-random generators, starting with the original version of von Neumann, Metropolis, and Ulam, continuing with Lehmer’s well-known congruencial generator, and the Fibonacci generalisation. For testing those generators by statistical tests (again with little theoretical ground), Marsaglia is mentioned.  The paper also covers in great detail the quasi-random sequences, covering low discrepancy requirements, van der Corput’s, Halton’s and Hammersley’s sequences. Halton considers quasi-Monte Carlo as “a branch of numerical analysis”.

The paper concludes with a list of 24 future developments I will cover in another post tomorrow…