Archive for JRSSB

a new Editor for Series B

Posted in Statistics with tags , , , on January 16, 2017 by xi'an

As every odd year, the Royal Statistical Society is seeking a new joint editor for Series B! After four years of dedication to the (The!) journal, Piotr Fryzlewicz is indeed going to retire from this duty by the end of 2017. Many thanks to Piotr for his unfailing involvement in Series B and the preservation of its uncompromising selection of papers! The call thus open for candidates for the next round of editorship, from 2018 to 2021, with a deadline of 31 January, 2017. Interested candidates should contact Martin Owen, at the Society’s address or by email at rss.org.uk with journal as recipient (local-part). The new editor will work with the current joint editor, David Dunson, whose term runs till December 2019. (I am also looking forward working with Piotr’s successor in developing the Series B blog, Series’ Blog!)

a mistake in a 1990 paper

Posted in Kids, Statistics, University life with tags , , , , , , , , on August 7, 2016 by xi'an

As we were working on the Handbook of mixture analysis with Sylvia Früwirth-Schnatter and Gilles Celeux today, near Saint-Germain des Près, I realised that there was a mistake in our 1990 mixture paper with Jean Diebolt [published in 1994], in that when we are proposing to use improper “Jeffreys” priors under the restriction that no component of the Gaussian mixture is “empty”, meaning that there are at least two observations generated from each component, the likelihood needs to be renormalised to be a density for the sample. This normalisation constant only depends on the weights of the mixture, which means that, when simulating from the full conditional distribution of the weights, there should be an extra-acceptance step to account for this correction. Of course, the term is essentially equal to one for a large enough sample but this remains a mistake nonetheless! It is funny that it remained undetected for so long in my most cited paper. Checking on Larry’s 1999 paper exploring the idea of excluding terms from the likelihood to allow for improper priors, I did not spot him using a correction either.

control functionals for Monte Carlo integration

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , on June 28, 2016 by xi'an

img_2451A paper on control variates by Chris Oates, Mark Girolami (Warwick) and Nicolas Chopin (CREST) appeared in a recent issue of Series B. I had read and discussed the paper with them previously and the following is a set of comments I wrote at some stage, to be taken with enough gains of salt since Chris, Mark and Nicolas answered them either orally or in the paper. Note also that I already discussed an earlier version, with comments that are not necessarily coherent with the following ones! [Thanks to the busy softshop this week, I resorted to publish some older drafts, so mileage can vary in the coming days.]

First, it took me quite a while to get over the paper, mostly because I have never worked with reproducible kernel Hilbert spaces (RKHS) before. I looked at some proofs in the appendix and at the whole paper but could not spot anything amiss. It is obviously a major step to uncover a manageable method with a rate that is lower than √n. When I set my PhD student Anne Philippe on the approach via Riemann sums, we were quickly hindered by the dimension issue and could not find a way out. In the first versions of the nested sampling approach, John Skilling had also thought he could get higher convergence rates before realising the Monte Carlo error had not disappeared and hence was keeping the rate at the same √n speed.

The core proof in the paper leading to the 7/12 convergence rate relies on a mathematical result of Sun and Wu (2009) that a certain rate of regularisation of the function of interest leads to an average variance of order 1/6. I have no reason to mistrust the result (and anyway did not check the original paper), but I am still puzzled by the fact that it almost immediately leads to the control variate estimator having a smaller order variance (or at least variability). On average or in probability. (I am also uncertain on the possibility to interpret the boxplot figures as establishing super-√n speed.)

Another thing I cannot truly grasp is how the control functional estimator of (7) can be both a mere linear recombination of individual unbiased estimators of the target expectation and an improvement in the variance rate. I acknowledge that the coefficients of the matrices are functions of the sample simulated from the target density but still…

Another source of inner puzzlement is the choice of the kernel in the paper, which seems too simple to be able to cover all problems despite being used in every illustration there. I see the kernel as centred at zero, which means a central location must be know, decreasing to zero away from this centre, so possibly missing aspects of the integrand that are too far away, and isotonic in the reference norm, which also seems to preclude some settings where the integrand is not that compatible with the geometry.

I am equally nonplussed by the existence of a deterministic bound on the error, although it is not completely deterministic, depending on the values of the reproducible kernel at the points of the sample. Does it imply anything restrictive on the function to be integrated?

A side remark about the use of intractable in the paper is that, given the development of a whole new branch of computational statistics handling likelihoods that cannot be computed at all, intractable should possibly be reserved for such higher complexity models.

the end of Series B!

Posted in Books, pictures, Statistics, University life with tags , , , , on May 25, 2016 by xi'an

I received this news from the RSS today that all the RSS journals are turning 100% electronic. No paper version any longer! I deeply regret this move on which, as an RSS member, I would have appreciated to be consulted as I find much easier to browse through the current issue when it arrives in my mailbox, rather than being t best reminded by an email that I will most likely ignore and erase. And as I consider the production of the journals the prime goal of the Royal Statistical Society. And as I read that only 25% of the members had opted so far for the electronic format, which does not sound to me like a majority. In addition, moving to electronic-only journals does not bring the perks one would expect from electronic journals:

  • no bonuses like supplementary material, code, open or edited comments
  • no reduction in the subscription rate of the journals and penalty fees if one still wants a paper version, which amounts to a massive increase in the subscription price
  • no disengagement from the commercial publisher, whose role become even less relevant
  • no access to the issues of the years one has paid for, once one stops subscribing.

“The benefits of electronic publishing include: faster publishing speeds; increased content; instant access from a range of electronic devices; additional functionality; and of course, environmental sustainability.”

The move is sold with typical marketing noise. But I do not buy it: publishing speeds will remain the same as driven by the reviewing part, I do not see where the contents are increased, and I cannot seriously read a journal article from my phone, so this range of electronic devices remains a gadget. Not happy!

statistical modelling of citation exchange between statistics journals

Posted in Books, Statistics, University life with tags , , , , , on April 10, 2015 by xi'an

Cristiano Varin, Manuela Cattelan and David Firth (Warwick) have written a paper on the statistical analysis of citations and index factors, paper that is going to be Read at the Royal Statistical Society next May the 13th. And hence is completely open to contributed discussions. Now, I have written several entries on the ‘Og about the limited trust I set to citation indicators, as well as about the abuse made of those. However I do not think I will contribute to the discussion as my reservations are about the whole bibliometrics excesses and not about the methodology used in the paper.

The paper builds several models on the citation data provided by the “Web of Science” compiled by Thompson Reuters. The focus is on 47 Statistics journals, with a citation horizon of ten years, which is much more reasonable than the two years in the regular impact factor. A first feature of interest in the descriptive analysis of the data is that all journals have a majority of citations from and to journals outside statistics or at least outside the list. Which I find quite surprising. The authors also build a cluster based on the exchange of citations, resulting in rather predictable clusters, even though JCGS and Statistics and Computing escape the computational cluster to end up in theory and methods along Annals of Statistics and JRSS Series B.

In addition to the unsavoury impact factor, a ranking method discussed in the paper is the eigenfactor score that starts with a Markov exploration of articles by going at random to one of the papers in the reference list and so on. (Which shares drawbacks with the impact factor, e.g., in that it does not account for the good or bad reason the paper is cited.) Most methods produce the Big Four at the top, with Series B ranked #1, and Communications in Statistics A and B at the bottom, along with Journal of Applied Statistics. Again, rather anticlimactic.

The major modelling input is based on Stephen Stigler’s model, a generalised linear model on the log-odds of cross citations. The Big Four once again receive high scores, with Series B still much ahead. (The authors later question the bias due to the Read Paper effect, but cannot easily evaluate this impact. While some Read Papers like Spiegelhalter et al. 2002 DIC do generate enormous citation traffic, to the point of getting re-read!, other journals also contain discussion papers. And are free to include an on-line contributed discussion section if they wish.) Using an extra ranking lasso step does not change things.

In order to check the relevance of such rankings, the authors also look at the connection with the conclusions of the (UK) 2008 Research Assessment Exercise. They conclude that the normalised eigenfactor score and Stigler model are more correlated with the RAE ranking than the other indicators.  Which means either that the scores are good predictors or that the RAE panel relied too heavily on bibliometrics! The more global conclusion is that clusters of journals or researchers have very close indicators, hence that ranking should be conducted with more caution that it is currently. And, more importantly, that reverting the indices from journals to researchers has no validation and little information.