Archive for label switching

Another harmonic mean

Posted in Books, Statistics, University life with tags , , , , , , , , on May 21, 2022 by xi'an

Yet another paper that addresses the approximation of the marginal likelihood by a truncated harmonic mean, a popular theme of mine. A 2020 paper by Johannes Reich, entitled Estimating marginal likelihoods from the posterior draws through a geometric identity and published in Monte Carlo Methods and Applications.

The geometric identity it aims at exploiting is that

m(x) = \frac{\int_A \,\text d\theta}{\int_A \pi(\theta|x)\big/\pi(\theta)f(x|\theta)\,\text d\theta}

for any (positive volume) compact set $A$. This is exactly the same identity as in an earlier and uncited 2017 paper by Ana Pajor, with the also quite similar (!) title Estimating the Marginal Likelihood Using the Arithmetic Mean Identity and which I discussed on the ‘Og, linked with another 2012 paper by Lenk. Also discussed here. This geometric or arithmetic identity is again related to the harmonic mean correction based on a HPD region A that Darren Wraith and myself proposed at MaxEnt 2009. And that Jean-Michel and I presented at Frontiers of statistical decision making and Bayesian analysis in 2010.

In this avatar, the set A is chosen close to an HPD region, once more, with a structure that allows for an exact computation of its volume. Namely an ellipsoid that contains roughly 50% of the simulations from the posterior (rather than our non-intersecting union of balls centered at the 50% HPD points), which assumes a Euclidean structure of the parameter space (or, in other words, depends on the parameterisation)In the mixture illustration, the author surprisingly omits Chib’s solution, despite symmetrised versions avoiding the label (un)switching issues. . What I do not get is how this solution gets around the label switching challenge in that set A remains an ellipsoid for multimodal posteriors, which means it either corresponds to a single mode [but then how can a simulation be restricted to a “single permutation of the indicator labels“?] or it covers all modes but also the unlikely valleys in-between.


identifying mixtures

Posted in Books, pictures, Statistics with tags , , , , , , on February 27, 2022 by xi'an

I had not read this 2017 discussion of Bayesian mixture estimation by Michael Betancourt before I found it mentioned in a recent paper. Where he re-explores the issue of identifiability and label switching in finite mixture models. Calling somewhat abusively degenerate mixtures where all components share the same family, e.g., mixtures of Gaussians. Illustrated by Stan code and output. This is rather traditional material, in that the non-identifiability of mixture components has been discussed in many papers and at least as many solutions proposed to overcome the difficulties of exploring the posterior distribution. Including our 2000 JASA paper with Gilles Celeux and Merrilee Hurn. With my favourite approach being the label-free representations as a point process in the parameter space (following an idea of Peter Green) or as a collection of clusters in the latent variable space. I am much less convinced by ordering constraints: while they formally differentiate and therefore identify the individual components of a mixture, they partition the parameter space with no regard towards the geometry of the posterior distribution. With in turn potential consequences on MCMC explorations of this fragmented surface that creates barriers for simulated Markov chains. Plus further difficulties with inferior but attracting modes in identifiable situations.

ordered allocation sampler

Posted in Books, Statistics with tags , , , , , , , , , , , on November 29, 2021 by xi'an

Recently, Pierpaolo De Blasi and María Gil-Leyva arXived a proposal for a novel Gibbs sampler for mixture models. In both finite and infinite mixture models. In connection with Pitman (1996) theory of species sampling and with interesting features in terms of removing the vexing label switching features.

The key idea is to work with the mixture components in the random order of appearance in an exchangeable sequence from the mixing distribution (…) In accordance with the order of appearance, we derive a new Gibbs sampling algorithm that we name the ordered allocation sampler. “

This central idea is thus a reinterpretation of the mixture model as the marginal of the component model when its parameter is distributed as a species sampling variate. An ensuing marginal algorithm is to integrate out the weights and the allocation variables to only consider the non-empty component parameters and the partition function, which are label invariant. Which reminded me of the proposal we made in our 2000 JASA paper with Gilles Celeux and Merrilee Hurn (one of my favourite papers!). And of the [first paper in Statistical Methodology] 2004 partitioned importance sampling version with George Casella and Marty Wells. As in the later, the solution seems to require the prior on the component parameters to be conjugate (as I do not see a way to produce an unbiased estimator of the partition allocation probabilities).

The ordered allocation sample considers the posterior distribution of the different object made of the parameters and of the sequence of allocations to the components for the sample written in a given order, ie y¹,y², &tc. Hence y¹ always gets associated with component 1, y² with either component 1 or component 2, and so on. For this distribution, the full conditionals are available, incl. the full posterior on the number m of components, only depending on the data through the partition sizes and the number m⁺ of non-empty components. (Which relates to the debate as to whether or not m is estimable…) This sequential allocation reminded me as well of an earlier 2007 JRSS paper by Nicolas Chopin. Albeit using particles rather than Gibbs and applied to a hidden Markov model. Funny enough, their synthetic dataset univ4 almost resembles the Galaxy dataset (as in the above picture of mine)!

ISBA 2021 grand finale

Posted in Kids, Mountains, pictures, Running, Statistics, Travel, University life, Wines with tags , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , on July 3, 2021 by xi'an

Last day of ISBA (and ISB@CIRM), or maybe half-day, since there are only five groups of sessions we can attend in Mediterranean time.

My first session was one on priors for mixtures, with 162⁺ attendees at 5:15am! (well, at 11:15 Wien or Marseille time), Gertrud Malsiner-Walli distinguishing between priors on number of components [in the model] vs number of clusters [in the data], with a minor question of mine whether or not a “prior” is appropriate for a data-dependent quantity. And Deborah Dunkel presenting [very early in the US!] anchor models for fighting label switching, which reminded me of the talk she gave at the mixture session of JSM 2018 in Vancouver. (With extensions to consistency and mixtures of regression.) And Clara Grazian debating on objective priors for the number of components in a mixture [in the Sydney evening], using loss functions to build these. Overall it seems there were many talks on mixtures and clustering this year.

After the lunch break, when several ISB@CIRM were about to leave, we ran the Objective Bayes contributed session, which actually included several Stein-like minimaxity talks. Plus one by Théo Moins from the patio of CIRM, with ciccadas in the background. Incredibly chaired by my friend Gonzalo, who had a question at the ready for each and every speaker! And then the Savage Awards II session. Which ceremony is postponed till Montréal next year. And which nominees are uniformly impressive!!! The winner will only be announced in September, via the ISBA Bulletin. Missing the ISBA general assembly for a dinner in Cassis. And being back for the Bayesian optimisation session.

I would have expected more talks at the boundary of BS & ML (as well as COVID and epidemic decision making), the dearth of which should be a cause for concern if researchers at this boundary do not prioritise ISBA meetings over more generic meetings like NeurIPS… (An exception was George Papamakarios’ talk on variational autoencoders in the Savage Awards II session.)

Many many thanks to the group of students at UConn involved in setting most of the Whova site and running the support throughout the conference. It indeed went on very smoothly and provided a worthwhile substitute for the 100% on-site version. Actually, I both hope for the COVID pandemic (or at least the restrictions attached to it) to abate and for the hybrid structure of meetings to stay, along with the multiplication of mirror workshops. Being together is essential to the DNA of conferences, but travelling to a single location is not so desirable, for many reasons. Looking for ISBA 2022, a year from now, either in Montréal, Québec, or in one of the mirror sites!

label switching by optimal transport: Wasserstein to the rescue

Posted in Books, Statistics, Travel with tags , , , , , , , , , , , , , , on November 28, 2019 by xi'an

A new arXival by Pierre Monteiller et al. on resolving label switching by optimal transport. To appear in NeurIPS 2019, next month (where I will be, but extra muros, as I have not registered for the conference). Among other things, the paper was inspired from an answer of mine on X validated, presumably a première (and a dernière?!). Rather than picketing [in the likely unpleasant weather ]on the pavement outside the conference centre, here are my raw reactions to the proposal made in the paper. (Usual disclaimer: I was not involved in the review of this paper.)

“Previous methods such as the invariant losses of Celeux et al. (2000) and pivot alignments of Marin et al. (2005) do not identify modes in a principled manner.”

Unprincipled, me?! We did not aim at identifying all modes but only one of them, since the posterior distribution is invariant under reparameterisation. Without any bad feeling (!), I still maintain my position that using a permutation invariant loss function is a most principled and Bayesian approach towards a proper resolution of the issue. Even though figuring out the resulting Bayes estimate may prove tricky.

The paper thus adopts a different approach, towards giving a manageable meaning to the average of the mixture distributions over all permutations, not in a linear Euclidean sense but thanks to a Wasserstein barycentre. Which indeed allows for an averaged mixture density, although a point-by-point estimate that does not require switching to occur at all was already proposed in earlier papers of ours. Including the Bayesian Core. As shown above. What was first unclear to me is how necessary the Wasserstein formalism proves to be in this context. In fact, the major difference with the above picture is that the estimated barycentre is a mixture with the same number of components. Computing time? Bayesian estimate?

Green’s approach to the problem via a point process representation [briefly mentioned on page 6] of the mixture itself, as for instance presented in our mixture analysis handbook, should have been considered. As well as issues about Bayes factors examined in Gelman et al. (2003) and our more recent work with Kate Jeong Eun Lee. Where the practical impossibility of considering all possible permutations is processed by importance sampling.

An idle thought that came to me while reading this paper (in Seoul) was that a more challenging problem would be to face a model invariant under the action of a group with only a subset of known elements of that group. Or simply too many elements in the group. In which case averaging over the orbit would become an issue.

%d bloggers like this: