**F**ollowing a lively discussion with Akihiko Nishimura during a BNP11 poster session last Tuesday, I took the opportunity of the flight to Montréal to read through the arXived paper (written jointly with David Dunson and Jianfeng Liu). The issue is thus one of handling discrete valued parameters in Hamiltonian Monte Carlo. The basic “trick” in handling this complexity goes by turning the discrete support via the inclusion of an auxiliary continuous variable whose discretisation is the discrete parameter, hence resembling to some extent the slice sampler. This removes the discreteness blockage but creates another difficulty, namely handling a discontinuous target density. (I idly wonder why the trick cannot be iterated to second or higher order so that to achieve the right amount of smoothness. Of course, the maths behind would be less cool!) The extension of the Hamiltonian to this setting by a convolution is a trick I had not seen since the derivation of the Central Limit Theorem during Neveu’s course at Polytechnique. What I find most exciting in the resolution is the move from a Gaussian momentum to a Laplace momentum, for the reason that I always wondered at alternatives [without trying anything myself!]. The Laplace version is indeed most appropriate here in that it avoids a computation of all discontinuity points and associated values along a trajectory. Since the moves are done component-wise, the method has a Metropolis-within-Gibbs flavour, which actually happens to be a special case. What is also striking is that the approach is both rejection-free and exact, provided ergodicity occurs, which is the case when the stepsize is random.

In addition to this resolution of the discrete parameter problem, the paper presents the further appeal of (re-)running an analysis of the Jolly-Seber capture-recapture model. Where the discrete parameter is the latent number of live animals [or whatever] in the system at any observed time. (Which we cover in Bayesian essentials with R as a neat entry to both dynamic and latent variable models.) I would have liked to see a comparison with the completion approach of Jérôme Dupuis (1995, Biometrika), since I figure the Metropolis version implemented here differs from Jérôme’s. The second example is built on Bissiri et al. (2016) surrogate likelihood (discussed earlier here) and Chopin and Ridgway (2017) catalogue of solutions for not analysing the Pima Indian dataset. (Replaced by another dataset here.)