**F**ollowing my demise [of the Bayes factor], Alexander Ly, Josine Verhagen, and Eric-Jan Wagenmakers wrote a very detailed response. Which I just saw the other day while in Banff. (If not in Schiphol, which would have been more appropriate!)

“In this rejoinder we argue that Robert’s (2016) alternative view on testing has more in common with Jeffreys’s Bayes factor than he suggests, as they share the same ‘‘shortcomings’’.”

Rather unsurprisingly (!), the authors agree with my position on the dangers to ignore decisional aspects when using the Bayes factor. A point of dissension is the resolution of the Jeffreys[-Lindley-Bartlett] paradox. One consequence derived by Alexander and co-authors is that priors should change between testing and estimating. Because the parameters have a different meaning under the null and under the alternative, a point I agree with in that these parameters are indexed by the model [index!]. But with which I disagree when arguing that the same parameter (e.g., a mean under model M¹) should have *two priors* when moving from testing to estimation. To state that the priors within the marginal likelihoods “are not designed to yield posteriors that are good for estimation” (p.45) amounts to wishful thinking. I also do not find a strong justification within the paper or the response about choosing an improper prior on the nuisance parameter, e.g. σ, with the *same* constant. Another a posteriori validation in my opinion. However, I agree with the conclusion that the Jeffreys paradox prohibits the use of an improper prior on the parameter being tested (or of the test itself). A second point made by the authors is that Jeffreys’ Bayes factor is information consistent, which is correct but does not solved my quandary with the lack of precise calibration of the object, namely that alternatives abound in a non-informative situation.

“…the work by Kamary et al. (2014) impressively introduces an alternative view on testing, an algorithmic resolution, and a theoretical justification.”

The second part of the comments is highly supportive of our mixture approach and I obviously appreciate very much this support! Especially if we ever manage to turn the paper into a discussion paper! The authors also draw a connection with Harold Jeffreys’ distinction between testing and estimation, based upon Laplace’s succession rule. Unbearably slow succession law. Which is well-taken if somewhat specious since this is a testing framework where a single observation can send the Bayes factor to zero or +∞. (I further enjoyed the connection of the Poisson-versus-Negative Binomial test with Jeffreys’ call for common parameters. And the supportive comments on our recent mixture reparameterisation paper with Kaniav Kamari and Kate Lee.) The other point that the Bayes factor is more sensitive to the choice of the prior (beware the tails!) can be viewed as a plus for mixture estimation, as acknowledged there. (The final paragraph about the faster convergence of the weight α is not strongly