**A** bemusing question from X validated:

How can we have a posterior distribution that is a uniform distribution?

With the underlying message that a uniform distribution does not depend on the data, since it is uniform! While it is always possible to pick the parameterisation *a posteriori* so that the posterior is uniform, by simply using the inverse cdf transform, or to pick the prior *a posteriori* so that the prior cancels the likelihood function, there exist more authentic discrete examples of a data realisation leading to a uniform distribution, as eg in the Multinomial model. I deem the confusion to stem from the impression either that uniform means non-informative (what we could dub Laplace’s daemon!) or that it could remain uniform for all realisations of the sampled rv.