**W**hen looking for a link in a recent post, I came across Richard Brent’ arXival of historical comments on George Forsythe’s last paper (in 1972). Which is about the Forsythe-von Neumann approach to simulating exponential variates, covered in Luc Devroye’s Non-Uniform Random Variate Generation in a special section, Section 2 of Chapter 4, is about generating a random variable from a target density proportional to g(x)exp(-F(x)), where g is a density and F is a function on (0,1). Then, after generating a realisation x⁰ from g and computing F(x⁰), generate a sequence u¹,u²,… of uniforms as long as they keep decreasing, i.e., F(x⁰) >u¹>u²>… If the maximal length k of this sequence is odd, the algorithm exists with a value x⁰ generated from g(x)exp(-F(x)). Von Neumann (1949) treated the special case when g is constant and F(x)=x, which leads to an Exponential generator that never calls an exponential function. Which does not make the proposal a particularly efficient one as it rejects O(½) of the simulations. Refinements of the algorithm lead to using on average 1.38 uniforms per Normal generation, which does not sound much faster than a call to the Box-Muller method, despite what is written in the paper. (Brent also suggests using David Wallace’s 1999 Normal generator, which I had not encountered before. And which I am uncertain is relevant at the present time.)