Archive for Linz

MCqMC 2022 in Linz, 17-22 July

Posted in Statistics with tags , , , , , , , on August 29, 2020 by xi'an

At the end of MCqMC 2020, held on-line with the amazing support of ICMS in Edinburgh, the next location was announced as being Linz, Austria, hosted by the Johannes Kepler Universität I visited a few years ago (with a memorable run up a nearby hill!). Hopefully this will take place for real as well as on-line, but my prior is rather non-informed at the moment…

Approximate Maximum Likelihood Estimation

Posted in Books, Mountains, pictures, Statistics, Travel, University life with tags , , , , , , , , , on September 21, 2015 by xi'an

linz3Bertl et al. arXived last July a paper on a maximum likelihood estimator based on an alternative to ABC techniques. And to indirect inference. (One of the authors in et al. is Andreas Futschik whom I visited last year in Linz.) Paper that I only spotted when gathering references for a reading list on ABC… The method is related to the “original ABC paper” of Diggle and Gratton (1984) which, parallel to Rubin (1984), contains in retrospect the idea of ABC methods. The starting point is stochastic approximation, namely the optimisation of a function of a parameter θ when written as an expectation of a random variable Y, E[Y|θ], as in the Kiefer-Wolfowitz algorithm. However, in the case of the likelihood function, there is rarely an unbiased estimator and the authors propose instead to use a kernel density estimator of the density of the summary statistic. This means that, at each iteration of the Kiefer-Wolfowitz algorithm, two sets of observations and hence of summary statistics are simulated and two kernel density estimates derived, both to be applied to the observed summary. The sequences underlying the Kiefer-Wolfowitz algorithm are taken from (the excellent optimisation book of) Spall (2003). Along with on-the-go adaptation and convergence test.

The theoretical difficulty in this extension is however that the kernel density estimator is not unbiased and thus that, rigorously speaking, the validation of the Kiefer-Wolfowitz algorithm does not apply here. On the practical side, the need for multiple starting points and multiple simulations of pseudo-samples may induce considerable time overload. Especially if  bootstrap is used to evaluate the precision of the MLE approximation. Besides normal and M/G/1 queue examples, the authors illustrate the approach on a population genetic dataset of Borneo and Sumatra orang-utans. With 5 parameters and 28 summary statistics. Which thus means using a kernel density estimator in dimension 28, a rather perilous adventure..!

up [and down] Pöstlingberg

Posted in Mountains, pictures, Running, Travel, University life with tags , , , , , , , , , on September 18, 2014 by xi'an

linz3

Early morning today, following my Linz guests’ advice, I went running towards the top of Pöstlingberg, a hill 250m over Linz and the Danube river. A perfect beacon thus avoiding wrong turns and extra-mileage, but still a wee climb on a steep path for the last part. The reward of the view from the top was definitely worth the [mild] effort and I even had enough time to enjoy a good Austrian breakfast before my ABC talk

linz4

talk in Linz [first slide]

Posted in Mountains, pictures, Running, University life with tags , , , , , , , , , on September 17, 2014 by xi'an

arriving in Linz

Posted in pictures, Travel, University life with tags , , , , on September 17, 2014 by xi'an