Archive for loss function

label switching in Bayesian mixture models

Posted in Books, Statistics, University life with tags , , , , , , , , , , , on October 31, 2014 by xi'an

cover of Mixture Estimation and ApplicationsA referee of our paper on approximating evidence for mixture model with Jeong Eun Lee pointed out the recent paper by Carlos Rodríguez and Stephen Walker on label switching in Bayesian mixture models: deterministic relabelling strategies. Which appeared this year in JCGS and went beyond, below or above my radar.

Label switching is an issue with mixture estimation (and other latent variable models) because mixture models are ill-posed models where part of the parameter is not identifiable. Indeed, the density of a mixture being a sum of terms

\sum_{j=1}^k \omega_j f(y|\theta_i)

the parameter (vector) of the ω’s and of the θ’s is at best identifiable up to an arbitrary permutation of the components of the above sum. In other words, “component #1 of the mixture” is not a meaningful concept. And hence cannot be estimated.

This problem has been known for quite a while, much prior to EM and MCMC algorithms for mixtures, but it is only since mixtures have become truly estimable by Bayesian approaches that the debate has grown on this issue. In the very early days, Jean Diebolt and I proposed ordering the components in a unique way to give them a meaning. For instant, “component #1” would then be the component with the smallest mean or the smallest weight and so on… Later, in one of my favourite X papers, with Gilles Celeux and Merrilee Hurn, we exposed the convergence issues related with the non-identifiability of mixture models, namely that the posterior distributions were almost always multimodal, with a multiple of k! symmetric modes in the case of exchangeable priors, and therefore that Markov chains would have trouble to visit all those modes in a symmetric manner, despite the symmetry being guaranteed from the shape of the posterior. And we conclude with the slightly provocative statement that hardly any Markov chain inferring about mixture models had ever converged! In parallel, time-wise, Matthew Stephens had completed a thesis at Oxford on the same topic and proposed solutions for relabelling MCMC simulations in order to identify a single mode and hence produce meaningful estimators. Giving another meaning to the notion of “component #1”.

And then the topic began to attract more and more researchers, being both simple to describe and frustrating in its lack of definitive answer, both from simulation and inference perspectives. Rodriguez’s and Walker’s paper provides a survey on the label switching strategies in the Bayesian processing of mixtures, but its innovative part is in deriving a relabelling strategy. Which consists of finding the optimal permutation (at each iteration of the Markov chain) by minimising a loss function inspired from k-means clustering. Which is connected with both Stephens’ and our [JASA, 2000] loss functions. The performances of this new version are shown to be roughly comparable with those of other relabelling strategies, in the case of Gaussian mixtures. (Making me wonder if the choice of the loss function is not favourable to Gaussian mixtures.) And somehow faster than Stephens’ Kullback-Leibler loss approach.

“Hence, in an MCMC algorithm, the indices of the parameters can permute multiple times between iterations. As a result, we cannot identify the hidden groups that make [all] ergodic averages to estimate characteristics of the components useless.”

One section of the paper puzzles me, albeit it does not impact the methodology and the conclusions. In Section 2.1 (p.27), the authors consider the quantity

p(z_i=j|{\mathbf y})

which is the marginal probability of allocating observation i to cluster or component j. Under an exchangeable prior, this quantity is uniformly equal to 1/k for all observations i and all components j, by virtue of the invariance under permutation of the indices… So at best this can serve as a control variate. Later in Section 2.2 (p.28), the above sentence does signal a problem with those averages but it seem to attribute it to MCMC behaviour rather than to the invariance of the posterior (or to the non-identifiability of the components per se). At last, the paper mentions that “given the allocations, the likelihood is invariant under permutations of the parameters and the allocations” (p.28), which is not correct, since eqn. (8)

f(y_i|\theta_{\sigma(z_i)}) =f(y_i|\theta_{\tau(z_i)})

does not hold when the two permutations σ and τ give different images of zi

MAP or mean?!

Posted in Statistics, Travel, University life with tags , , , on March 5, 2014 by xi'an

“A frequent matter of debate in Bayesian inversion is the question, which of the two principle point-estimators, the maximum-a-posteriori (MAP) or the conditional mean (CM) estimate is to be preferred.”

An interesting topic for this arXived paper by Burger and Lucka that I (also) read in the plane to Montréal, even though I do not share the concern that we should pick between those two estimators (only or at all), since what matters is the posterior distribution and the use one makes of it. I thus disagree there is any kind of a “debate concerning the choice of point estimates”. If Bayesian inference reduces to producing a point estimate, this is a regularisation technique and the Bayesian interpretation is both incidental and superfluous.

Maybe the most interesting result in the paper is that the MAP is expressed as a proper Bayes estimator! I was under the opposite impression, mostly because the folklore (and even The Bayesian Core)  have it that it corresponds to a 0-1 loss function does not hold for continuous parameter spaces and also because it seems to conflict with the results of Druihlet and Marin (BA, 2007), who point out that the MAP ultimately depends on the choice of the dominating measure. (Even though the Lebesgue measure is implicitly chosen as the default.) The authors of this arXived paper start with a distance based on the prior; called the Bregman distance. Which may be the quadratic or the entropy distance depending on the prior. Defining a loss function that is a mix of this Bregman distance and of the quadratic distance

||K(\hat u-u)||^2+2D_\pi(\hat u,u)

produces the MAP as the Bayes estimator. So where did the dominating measure go? In fact, nowhere: both the loss function and the resulting estimator are clearly dependent on the choice of the dominating measure… (The loss depends on the prior but this is not a drawback per se!)

reading classics (#9,10)

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , , , on January 28, 2014 by xi'an

La Défense from Paris-Dauphine, Nov. 15, 2012Today was the very last session of our Reading Classics Seminar for the academic year 2013-2014. We listened two presentations, one on the Casella and Strawderman (1984) paper on the estimation of the normal bounded mean. And one on the Hartigan and Wong’s 1979 K-Means Clustering Algorithm paper in JRSS C. The first presentation did not go well as my student had difficulties with the maths behind the paper. (As he did not come to ask me or others for help, it may well be that he put this talk together at the last minute, at a time busy with finals and project deliveries. He also failed to exploit those earlier presentations of the paper.) The innovative part in the talk was the presentation of several R simulations comparing the risk of the minimax Bayes estimator with the one for the MLE. Although the choice of simulating different samples of standard normals for different values of the parameters and even for both estimators made the curves (unnecessarily) all wiggly.

By contrast, the second presentation was very well-designed, with great Beamer slides, interactive features and a software oriented focus. My student Mouna Berrada started from the existing R function kmeans to explain the principles of the algorithm, recycling the interactive presentation of last year as well (with my permission), and creating a dynamic flowchart that was most helpful. So she made the best of this very short paper! Just (predictably) missing the question of the statistical model behind the procedure. During the discussion, I mused why k-medians clustering was not more popular as it offered higher robustness guarantees, albeit further away from a genuine statistical model. And why k-means clustering was not more systematically compared with mixture (EM) estimation.

Here are the slides for the second talk

%d bloggers like this: