**I**n connection with the recent PhD thesis defence of Juliette Chevallier, in which I took a somewhat virtual part for being physically in Warwick, I read a paper she wrote with Stéphanie Allassonnière on stochastic approximation versions of the EM algorithm. Computing the MAP estimator can be done via some adapted for simulated annealing versions of EM, possibly using MCMC as for instance in the Monolix software and its MCMC-SAEM algorithm. Where SA stands sometimes for stochastic approximation and sometimes for simulated annealing, originally developed by Gilles Celeux and Jean Diebolt, then reframed by Marc Lavielle and Eric Moulines [friends and coauthors]. With an MCMC step because the simulation of the latent variables involves an untractable normalising constant. (Contrary to this paper, Umberto Picchini and Adeline Samson proposed in 2015 a genuine ABC version of this approach, paper that I thought I missed—although I now remember discussing it with Adeline at JSM in Seattle—, ABC is used as a substitute for the conditional distribution of the latent variables given data and parameter. To be used as a substitute for the Q step of the (SA)EM algorithm. One more approximation step and one more simulation step and we would reach a form of ABC-Gibbs!) In this version, there are very few assumptions made on the approximation sequence, except that it converges with the iteration index to the true distribution (for a fixed observed sample) if convergence of ABC-SAEM is to happen. The paper takes as an illustrative sequence a collection of tempered versions of the true conditionals, but this is quite formal as I cannot fathom a feasible simulation from the tempered version and not from the untempered one. It is thus much more a version of tempered SAEM than truly connected with ABC (although a genuine ABC-EM version could be envisioned).

## Archive for MAP estimators

## ABC-SAEM

Posted in Books, Statistics, University life with tags ABC, ABC-Gibbs, ABC-MCMC, Alan Turing, École Polytechnique, EM, JSM 2015, MAP estimators, MCMC, MCMC-SAEM, Monolix, Paris-Saclay campus, PhD thesis, SAEM, Seattle, simulated annealing, stochastic approximation, University of Warwick, well-tempered algorithm on October 8, 2019 by xi'an## the most probable cluster

Posted in Books, Statistics with tags Bayesian Analysis, clustering, Dirichlet process Gaussian mixture, MAP estimators, mixtures of distributions, NP-complete problem, penalised likelihood on July 11, 2019 by xi'anIn the last issue of Bayesian Analysis, Lukasz Rajkowski studies the most likely (MAP) cluster associated with the Dirichlet process mixture model. Reminding me that most Bayesian estimates of the number of clusters are not consistent (when the sample size grows to infinity). I am always puzzled by this problem, as estimating the number of clusters sounds like an ill-posed problem, since it is growing with the number of observations, by definition of the Dirichlet process. For instance, the current paper establishes that the number of clusters intersecting a given compact set remains bounded. (The setup is one of a Normal Dirichlet process mixture with constant and known covariance matrix.)

Since the posterior probability of a given partition of {1,2,…,n} can be (formally) computed, the MAP estimate can be (formally) derived. I inserted *formally* in the previous sentence as the derivation of the exact MAP is an NP hard problem in the number n of observations. As an aside, I have trouble with the author’s argument that the convex hulls of the clusters should be disjoin: I do not see why they should when the mixture components are overlapping. (More generally, I fail to relate to notions like “bad clusters” or “overestimation of the number of clusters” or a “sensible choice” of the covariance matrix.) More globally, I am somewhat perplexed by the purpose of the paper and the relevance of the MAP estimate, even putting aside my generic criticisms of the MAP approach. No uncertainty is attached to the estimator, which thus appears as a form of penalised likelihood strategy rather than a genuinely Bayesian (Analysis) solution.

The first example in the paper is using data from a Uniform over (-1,1), concluding at a “misleading” partition by the MAP since it produces more than one cluster. I find this statement flabbergasting as the generative model is not the estimated model. To wit, the case of an exponential Exp(1) sample that cannot reach a maximum of the target function with a finite number of sample. Which brings me back full-circle to my general unease about clustering in that much more seems to be assumed about this notion than what the statistical model delivers.

## risk-adverse Bayes estimators

Posted in Books, pictures, Statistics with tags Australia, dominating measure, f-divergence, Hellinger loss, intrinsic losses, invariance, Kullback-Leibler divergence, MAP estimators, Monash University, reparameterisation, Victoria on January 28, 2019 by xi'an**A**n interesting paper came out on arXiv in early December, written by Michael Brand from Monash. It is about risk-adverse Bayes estimators, which are defined as avoiding the use of loss functions (although why avoiding loss functions is not made very clear in the paper). Close to MAP estimates, they bypass the dependence of said MAPs on parameterisation by maximising instead π(θ|x)/√I(θ), which is invariant by reparameterisation if not by a change of dominating measure. This form of MAP estimate is called the Wallace-Freeman (1987) estimator [of which I never heard].

The formal definition of a *risk-adverse estimator* is still based on a loss function in order to produce a proper version of the probability to be “wrong” in a continuous environment. The difference between estimator and true value θ, as expressed by the loss, is enlarged by a scale factor k pushed to infinity. Meaning that differences not in the immediate neighbourhood of zero are not relevant. In the case of a countable parameter space, this is essentially producing the MAP estimator. In the continuous case, for “well-defined” and “well-behaved” loss functions and estimators and density, including an invariance to parameterisation as in my own intrinsic losses of old!, which the author calls *likelihood-based* loss function, mentioning f-divergences, the resulting estimator(s) is a Wallace-Freeman estimator (of which there may be several). I did not get very deep into the study of the convergence proof, which seems to borrow more from real analysis à la Rudin than from functional analysis or measure theory, but keep returning to the apparent dependence of the notion on the dominating measure, which bothers me.

## MAP as Bayes estimators

Posted in Books, Kids, Statistics with tags Bayesian inference, counterexample, loss function, MAP estimators, posterior distribution on November 30, 2016 by xi'an**R**obert Bassett and Julio Deride just arXived a paper discussing the position of MAPs within Bayesian decision theory. A point I have discussed extensively on the ‘Og!

“…we provide a counterexample to the commonly accepted notion of MAP estimators as a limit of Bayes estimators having 0-1 loss.”

The authors mention The Bayesian Choice stating this property without further precautions and I completely agree to being careless in this regard! The difficulty stands with the limit of the maximisers being not necessarily the maximiser of the limit. The paper includes an example to this effect, with a prior as above, associated with a sampling distribution that does not depend on the parameter. The sufficient conditions proposed therein are that the posterior density is almost surely proper or quasiconcave.

This is a neat mathematical characterisation that cleans this “folk theorem” about MAP estimators. And for which the authors are to be congratulated! However, I am not very excited by the limiting property, whether it holds or not, as I have difficulties conceiving the use of a sequence of losses in a mildly realistic case. I rather prefer the alternate characterisation of MAP estimators by Burger and Lucka as proper Bayes estimators under another type of loss function, albeit a rather artificial one.

## variational Bayes for variable selection

Posted in Books, Statistics, University life with tags Bayesian lasso, consistency, EM algorithm, MAP estimators, MCMC, spike-and-slab prior, variable selection, variational Bayes methods on March 30, 2016 by xi'an**X**ichen Huang, Jin Wang and Feng Liang have recently arXived a paper where they rely on variational Bayes in conjunction with a spike-and-slab prior modelling. This actually stems from an earlier paper by Carbonetto and Stephens (2012), the difference being in the implementation of the method, which is less Gibbs-like for the current paper. The approach is not fully Bayesian in that, not only an approximate (variational) representation is used for the parameters of interest (regression coefficient and presence-absence indicators) but also the nuisance parameters are replaced with MAPs. The variational approximation on the regression parameters is an independent product of spike-and-slab distributions. The authors show the approximate approach is consistent in both frequentist and Bayesian terms (under identifiability assumptions). The method is undoubtedly faster than MCMC since it shares many features with EM but I still wonder at the Bayesian interpretability of the outcome, which writes out as a product of estimated spike-and-slab mixtures. First, the weights in the mixtures are estimated by EM, hence fixed. Second, the fact that the variational approximation is a product is confusing in that the posterior distribution on the regression coefficients is unlikely to produce posterior independence.

## more of the same!

Posted in Books, pictures, Statistics, University life with tags AISTATS 2016, Gibbs sampling, ICLR 2016, JAGS, latent variable, MAP estimators, Monte Carlos Statistical Methods, simulated annealing, Statistics and Computing on December 10, 2015 by xi'an**D**aniel Seita, Haoyu Chen, and John Canny arXived last week a paper entitled “Fast parallel SAME Gibbs sampling on general discrete Bayesian networks“. The distributions of the observables are defined by full conditional probability tables on the nodes of a graphical model. The distributions on the latent or missing nodes of the network are multinomial, with Dirichlet priors. To derive the MAP in such models, although this goal is not explicitly stated in the paper till the second page, the authors refer to the recent paper by Zhao et al. (2015), discussed on the ‘Og just as recently, which applies our SAME methodology. Since the paper is mostly computational (and submitted to ICLR 2016, which takes place juuust before AISTATS 2016), I do not have much to comment about it. Except to notice that the authors mention our paper as “Technical report, Statistics and Computing, 2002”. I am not sure the editor of Statistics and Computing will appreciate! The proper reference is in Statistics and Computing, **12**:77-84, 2002.

“We argue that SAME is beneficial for Gibbs sampling because it helps to reduce excess variance.”

Still, I am a wee bit surprised at both the above statement and at the comparison with a JAGS implementation. Because SAME augments the number of latent vectors as the number of iterations increases, so should be slower by a mere curse of dimension,, slower than a regular Gibbs with a single latent vector. And because I do not get either the connection with JAGS: SAME could be programmed in JAGS, couldn’t it? If the authors means a regular Gibbs sampler with no latent vector augmentation, the comparison makes little sense as one algorithm aims at the MAP (with a modest five replicas), while the other encompasses the complete posterior distribution. But this sounds unlikely when considering that the larger the number *m* of replicas the better their alternative to JAGS. It would thus be interesting to understand what the authors mean by JAGS in this setup!