**X**ichen Huang, Jin Wang and Feng Liang have recently arXived a paper where they rely on variational Bayes in conjunction with a spike-and-slab prior modelling. This actually stems from an earlier paper by Carbonetto and Stephens (2012), the difference being in the implementation of the method, which is less Gibbs-like for the current paper. The approach is not fully Bayesian in that, not only an approximate (variational) representation is used for the parameters of interest (regression coefficient and presence-absence indicators) but also the nuisance parameters are replaced with MAPs. The variational approximation on the regression parameters is an independent product of spike-and-slab distributions. The authors show the approximate approach is consistent in both frequentist and Bayesian terms (under identifiability assumptions). The method is undoubtedly faster than MCMC since it shares many features with EM but I still wonder at the Bayesian interpretability of the outcome, which writes out as a product of estimated spike-and-slab mixtures. First, the weights in the mixtures are estimated by EM, hence fixed. Second, the fact that the variational approximation is a product is confusing in that the posterior distribution on the regression coefficients is unlikely to produce posterior independence.

## Archive for MAP estimators

## variational Bayes for variable selection

Posted in Books, Statistics, University life with tags Bayesian lasso, consistency, EM algorithm, MAP estimators, MCMC, spike-and-slab prior, variable selection, variational Bayes methods on March 30, 2016 by xi'an## more of the same!

Posted in Books, pictures, Statistics, University life with tags AISTATS 2016, Gibbs sampling, ICLR 2016, JAGS, latent variable, MAP estimators, Monte Carlos Statistical Methods, simulated annealing, Statistics and Computing on December 10, 2015 by xi'an**D**aniel Seita, Haoyu Chen, and John Canny arXived last week a paper entitled “Fast parallel SAME Gibbs sampling on general discrete Bayesian networks“. The distributions of the observables are defined by full conditional probability tables on the nodes of a graphical model. The distributions on the latent or missing nodes of the network are multinomial, with Dirichlet priors. To derive the MAP in such models, although this goal is not explicitly stated in the paper till the second page, the authors refer to the recent paper by Zhao et al. (2015), discussed on the ‘Og just as recently, which applies our SAME methodology. Since the paper is mostly computational (and submitted to ICLR 2016, which takes place juuust before AISTATS 2016), I do not have much to comment about it. Except to notice that the authors mention our paper as “Technical report, Statistics and Computing, 2002”. I am not sure the editor of Statistics and Computing will appreciate! The proper reference is in Statistics and Computing, **12**:77-84, 2002.

“We argue that SAME is beneficial for Gibbs sampling because it helps to reduce excess variance.”

Still, I am a wee bit surprised at both the above statement and at the comparison with a JAGS implementation. Because SAME augments the number of latent vectors as the number of iterations increases, so should be slower by a mere curse of dimension,, slower than a regular Gibbs with a single latent vector. And because I do not get either the connection with JAGS: SAME could be programmed in JAGS, couldn’t it? If the authors means a regular Gibbs sampler with no latent vector augmentation, the comparison makes little sense as one algorithm aims at the MAP (with a modest five replicas), while the other encompasses the complete posterior distribution. But this sounds unlikely when considering that the larger the number *m* of replicas the better their alternative to JAGS. It would thus be interesting to understand what the authors mean by JAGS in this setup!

## comparison of Bayesian predictive methods for model selection

Posted in Books, Statistics, University life with tags all models are wrong, Bayesian model averaging, Bayesian model choice, Bayesian model selection, Cagliari, Kullback-Leibler divergence, MAP estimators, prior projection, Sardinia, The Bayesian Choice on April 9, 2015 by xi'an

“Dupuis and Robert (2003) proposed choosing the simplest model with enough explanatory power, for example 90%, but did not discuss the effect of this threshold for the predictive performance of the selected models. We note that, in general, the relative explanatory power is an unreliable indicator of the predictive performance of the submodel,”

**J**uho Piironen and Aki Vehtari arXived a survey on Bayesian model selection methods that is a sequel to the extensive survey of Vehtari and Ojanen (2012). Because most of the methods described in this survey stem from Kullback-Leibler proximity calculations, it includes some description of our posterior projection method with Costas Goutis and Jérôme Dupuis. We indeed did not consider prediction in our papers and even failed to include consistency result, as I was pointed out by my discussant in a model choice meeting in Cagliari, in … 1999! Still, I remain fond of the notion of defining a prior on the embedding model and of deducing priors on the parameters of the submodels by Kullback-Leibler projections. It obviously relies on the notion that the embedding model is “true” and that the submodels are only approximations. In the simulation experiments included in this survey, the projection method “performs best in terms of the predictive ability” (p.15) and “is much less vulnerable to the selection induced bias” (p.16).

Reading the other parts of the survey, I also came to the perspective that model averaging makes much more sense than model choice in predictive terms. Sounds obvious stated that way but it took me a while to come to this conclusion. Now, with our mixture representation, model averaging also comes as a natural consequence of the modelling, a point presumably not stressed enough in the current version of the paper. On the other hand, the MAP model now strikes me as artificial and linked to a very rudimentary loss function. A loss that does not account for the final purpose(s) of the model. And does not connect to the “all models are wrong” theorem.

## Bayesian filtering and smoothing [book review]

Posted in Books, Statistics, Travel, University life with tags book review, CHANCE, EM algorithm, filtering, IMS Textbooks, Kalman filter, MAP estimators, particle filter, particle MCMC, plagiarism, Simo Särkkä, smoothing, The Monty Hall problem on February 25, 2015 by xi'an**W**hen in Warwick last October, I met Simo Särkkä, who told me he had published an IMS monograph on Bayesian filtering and smoothing the year before. I thought it would be an appropriate book to review for CHANCE and tried to get a copy from Oxford University Press, unsuccessfully. I thus bought my own book that I received two weeks ago and took the opportunity of my Czech vacations to read it… *[A warning pre-empting accusations of self-plagiarism: this is a preliminary draft for a review to appear in CHANCE under my true name!]*

“From the Bayesian estimation point of view both the states and the static parameters are unknown (random) parameters of the system.” (p.20)

Bayesian filtering and smoothing is an introduction to the topic that essentially starts from ground zero. Chapter 1 motivates the use of filtering and smoothing through examples and highlights the naturally Bayesian approach to the problem(s). Two graphs illustrate the difference between filtering and smoothing by plotting for the same series of observations the successive confidence bands. The performances are obviously poorer with filtering but the fact that those intervals are point-wise rather than joint, i.e., that the graphs do not provide a confidence band. (The exercise section of that chapter is superfluous in that it suggests re-reading Kalman’s original paper and rephrases the Monty Hall paradox in a story unconnected with filtering!) Chapter 2 gives an introduction to Bayesian statistics in general, with a few pages on Bayesian computational methods. A first remark is that the above quote is both correct and mildly confusing in that the parameters can be consistently estimated, while the latent states cannot. A second remark is that justifying the MAP as associated with the 0-1 loss is incorrect in continuous settings. The third chapter deals with the batch updating of the posterior distribution, i.e., that the posterior at time t is the prior at time t+1. With applications to state-space systems including the Kalman filter. The fourth to sixth chapters concentrate on this Kalman filter and its extension, and I find it somewhat unsatisfactory in that the collection of such filters is overwhelming for a neophyte. And no assessment of the estimation error when the model is misspecified appears at this stage. And, as usual, I find the unscented Kalman filter hard to fathom! The same feeling applies to the smoothing chapters, from Chapter 8 to Chapter 10. Which mimic the earlier ones. Continue reading

## MAP or mean?!

Posted in Statistics, Travel, University life with tags dominating measure, loss function, MAP estimators, posterior mean on March 5, 2014 by xi'an

“A frequent matter of debate in Bayesian inversion is the question, which of the two principle point-estimators, the maximum-a-posteriori (MAP) or the conditional mean (CM) estimate is to be preferred.”

**A**n interesting topic for this arXived paper by Burger and Lucka that I (also) read in the plane to Montréal, even though I do not share the concern that we should pick between those two estimators (only or at all), since what matters is the posterior distribution and the use one makes of it. I thus disagree there is any kind of a “debate concerning the choice of point estimates”. If Bayesian inference reduces to producing a point estimate, this is a regularisation technique and the Bayesian interpretation is both incidental and superfluous.

**M**aybe the most interesting result in the paper is that the MAP is expressed as a proper Bayes estimator! I was under the opposite impression, mostly because the folklore (and even The Bayesian Core) have it that it corresponds to a 0-1 loss function does not hold for continuous parameter spaces and also because it seems to conflict with the results of Druihlet and Marin (BA, 2007), who point out that the MAP ultimately depends on the choice of the dominating measure. (Even though the Lebesgue measure is implicitly chosen as the default.) The authors of this arXived paper start with a distance based on the prior; called the Bregman distance. Which may be the quadratic or the entropy distance depending on the prior. Defining a loss function that is a mix of this Bregman distance and of the quadratic distance

produces the MAP as the Bayes estimator. So where did the dominating measure go? In fact, nowhere: both the loss function and the resulting estimator are clearly dependent on the choice of the dominating measure… (The loss depends on the prior but this is not a drawback per se!)

## machine learning [book review]

Posted in Books, R, Statistics, University life with tags Bayesian statistics, clustering, data analysis, inference, machine learning, MAP estimators, MIT Press, statistics book on October 21, 2013 by xi'an**I** have to admit the rather embarrassing fact that *Machine Learning, A probabilistic perspective* by Kevin P. Murphy is the first machine learning book I really read in detail…! It is a massive book with close to 1,100 pages and I thus hesitated taking it with me around, until I grabbed it in my bag for Warwick. (And in the train to Argentan.) It is also massive in its contents as it covers most (all?) of what I call statistics (but visibly corresponds to machine learning as well!). With a Bayesian bent most of the time (which is the secret meaning of *probabilistic* in the title).

“…we define machine learning as a set of methods that can automatically detect patterns in data, and then use the uncovered patterns to predict future data, or to perform other kinds of decision making under uncertainty (such as planning how to collect more data!).” (p.1)

**A**part from the Introduction—which I find rather confusing for not dwelling on the nature of errors and randomness and on the reason for using probabilistic models (since they are all wrong) and charming for including a picture of the author’s family as an illustration of face recognition algorithms—, I cannot say I found the book more lacking in foundations or in the breadth of methods and concepts it covers than a “standard” statistics book. In short, this is a perfectly acceptable statistics book! Furthermore, it has a very relevant and comprehensive selection of references (sometimes favouring “machine learning” references over “statistics” references!). Even the vocabulary seems pretty standard to me. All this makes me wonder why we at all distinguish between the two domains, following Larry Wasserman’s views (for once!) that the difference is mostly in the eye of the beholder, i.e. in which department one teaches… Which was already my perspective before I read the book but it comforted me even further. And the author agrees as well *(“The probabilistic approach to machine learning is closely related to the field of statistics, but differs slightly in terms of its emphasis and terminology”, p.1).* Let us all unite!

[..part 2 of the book review to appear tomorrow…]

## [weak] information paradox

Posted in pictures, Running, Statistics, University life with tags binomial coefficient, binomial distribution, combinatorics, cross validated, elm tree, MAP estimators, William Feller on December 2, 2011 by xi'an**W**hile (still!) looking at questions on ** Cross Validated** on Saturday morning, just before going out for a chilly run in the park, I noticed an interesting question about a light bulb problem. Once you get the story out of the way, it boils down to the fact that, when comparing two binomial probabilities,

*p*and

_{1}*p*

_{2}, based on a Bernoulli sample of size n, and when selecting the MAP probability, having either n=2k-1 or n=2k observations lead to the same (frequentist) probability of making the right choice. The details are provided in my answers here and there. It is a rather simple combinatoric proof, once you have the starting identity [W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1, 1968, [II.8], eqn (8.6)]

but I wonder if there exists a more statistical explanation to this weak information paradox…