Archive for marginal likelihood

estimating the marginal likelihood (or an information criterion)

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , on December 28, 2019 by xi'an

Tory Imai (from Kyoto University) arXived a paper last summer on what first looked like a novel approximation of the marginal likelihood. Based on the variance of thermodynamic integration. The starting argument is that there exists a power 0<t⁰<1 such that the expectation of the logarithm of the product of the prior by the likelihood to the power t⁰ or t⁰-powered likelihood  is equal to the standard log-marginal

\log m(x) = \mathbb{E}^{t^0}[ \log f(X|\theta) ]

when the expectation is under the posterior corresponding to the t⁰-powered likelihood (rather than the full likelihood). By an application of the mean value theorem. Watanabe’s (2013) WBIC replaces the optimum t⁰ with 1/log(n), n being the sample size. The issue in terms of computational statistics is of course that the error of WBIC (against the true log m(x)) is only characterised as an order of n.

The second part of the paper is rather obscure to me, as the motivation for the real log canonical threshold is missing, even though the quantity is connected with the power likelihood. And the DIC effective dimension. It then goes on to propose a new approximation of sBIC, where s stands for singular, of Drton and Plummer (2017) which I had missed (and may ask my colleague Martin later today at Warwick!). Quickly reading through the later however brings explanations about the real log canonical threshold being simply the effective dimension in Schwarwz’s BIC approximation to the log marginal,

\log m(x) \approx= \log f(x|\hat{\theta}_n) - \lambda \log n +(m-1)\log\log n

(as derived by Watanabe), where m is called the multiplicity of the real log canonical threshold. Both λ and m being unknown, Drton and Plummer (2017) estimate the above approximation in a Bayesian fashion, which leads to a double indexed marginal approximation for a collection of models. Since this thread leads me further and further from a numerical resolution of the marginal estimation, but brings in a different perspective on mixture Bayesian estimation, I will return to this highly  in a later post. The paper of Imai discusses a different numerical approximation to sBIC, With a potential improvement in computing sBIC. (The paper was proposed as a poster to BayesComp 2020, so I am looking forward discussing it with the author.)


an arithmetic mean identity

Posted in Books, pictures, R, Statistics, Travel, University life with tags , , , , , , , , , , , , on December 19, 2019 by xi'an

A 2017 paper by Ana Pajor published in Bayesian Analysis addresses my favourite problem [of computing the marginal likelihood] and which I discussed on the ‘Og, linking with another paper by Lenk published in 2012 in JCGS. That I already discussed here last year. Lenk’s (2009) paper is actually using a technique related to the harmonic mean correction based on HPD regions Darren Wraith and myself proposed at MaxEnt 2009. And which Jean-Michel and I presented at Frontiers of statistical decision making and Bayesian analysis in 2010. As I had only vague memories about the arithmetic mean version, we discussed the paper together with graduate students in Paris Dauphine.

The arithmetic mean solution, representing the marginal likelihood as the prior average of the likelihood, is a well-known approach used as well as the basis for nested sampling. With the improvement consisting in restricting the simulation to a set Ð with sufficiently high posterior probability. I am quite uneasy about P(Ð|y) estimated by 1 as the shape of the set containing all posterior simulations is completely arbitrary, parameterisation dependent, and very random since based on the extremes of this posterior sample. Plus, the set Ð converges to the entire parameter space with the number of posterior simulations. An alternative that we advocated in our earlier paper is to take Ð as the HPD region or a variational Bayes version . But the central issue with the HPD regions is how to construct these from an MCMC output and how to compute both P(Ð) and P(Ð|y). It does not seem like a good idea to set P(Ð|x) to the intended α level for the HPD coverage. Using a non-parametric version for estimating Ð could be in the end the only reasonable solution.

As a test, I reran the example of a conjugate normal model used in the paper, based on (exact) simulations from both the prior and  the posterior, and obtained approximations that were all close from the true marginal. With Chib’s being exact in that case (of course!), and an arithmetic mean surprisingly close without an importance correction:

> print(c(hame,chme,came,chib))
[1] -107.6821 -106.5968 -115.5950 -115.3610

Both harmonic versions are of the right order but not trustworthy, the truncation to such a set Ð as the one chosen in this paper having little impact.

back to Ockham’s razor

Posted in Statistics with tags , , , , , , , , , on July 31, 2019 by xi'an

“All in all, the Bayesian argument for selecting the MAP model as the single ‘best’ model is suggestive but not compelling.”

Last month, Jonty Rougier and Carey Priebe arXived a paper on Ockham’s factor, with a generalisation of a prior distribution acting as a regulariser, R(θ). Calling on the late David MacKay to argue that the evidence involves the correct penalising factor although they acknowledge that his central argument is not absolutely convincing, being based on a first-order Laplace approximation to the posterior distribution and hence “dubious”. The current approach stems from the candidate’s formula that is already at the core of Sid Chib’s method. The log evidence then decomposes as the sum of the maximum log-likelihood minus the log of the posterior-to-prior ratio at the MAP estimator. Called the flexibility.

“Defining model complexity as flexibility unifies the Bayesian and Frequentist justifications for selecting a single model by maximizing the evidence.”

While they bring forward rational arguments to consider this as a measure model complexity, it remains at an informal level in that other functions of this ratio could be used as well. This is especially hard to accept by non-Bayesians in that it (seriously) depends on the choice of the prior distribution, as all transforms of the evidence would. I am thus skeptical about the reception of the argument by frequentists…

thermodynamic integration plus temperings

Posted in Statistics, Travel, University life with tags , , , , , , , , , , , , on July 30, 2019 by xi'an

Biljana Stojkova and David Campbel recently arXived a paper on the used of parallel simulated tempering for thermodynamic integration towards producing estimates of marginal likelihoods. Resulting into a rather unwieldy acronym of PT-STWNC for “Parallel Tempering – Simulated Tempering Without Normalizing Constants”. Remember that parallel tempering runs T chains in parallel for T different powers of the likelihood (from 0 to 1), potentially swapping chain values at each iteration. Simulated tempering monitors a single chain that explores both the parameter space and the temperature range. Requiring a prior on the temperature. Whose optimal if unrealistic choice was found by Geyer and Thomson (1995) to be proportional to the inverse (and unknown) normalising constant (albeit over a finite set of temperatures). Proposing the new temperature instead via a random walk, the Metropolis within Gibbs update of the temperature τ then involves normalising constants.

“This approach is explored as proof of concept and not in a general sense because the precision of the approximation depends on the quality of the interpolator which in turn will be impacted by smoothness and continuity of the manifold, properties which are difficult to characterize or guarantee given the multi-modal nature of the likelihoods.”

To bypass this issue, the authors pick for their (formal) prior on the temperature τ, a prior such that the profile posterior distribution on τ is constant, i.e. the joint distribution at τ and at the mode [of the conditional posterior distribution of the parameter] is constant. This choice makes for a closed form prior, provided this mode of the tempered posterior can de facto be computed for each value of τ. (However it is unclear to me why the exact mode would need to be used.) The resulting Metropolis ratio becomes independent of the normalising constants. The final version of the algorithm runs an extra exchange step on both this simulated tempering version and the untempered version, i.e., the original unnormalised posterior. For the marginal likelihood, thermodynamic integration is invoked, following Friel and Pettitt (2008), using simulated tempering samples of (θ,τ) pairs (associated instead with the above constant profile posterior) and simple Riemann integration of the expected log posterior. The paper stresses the gain due to a continuous temperature scale, as it “removes the need for optimal temperature discretization schedule.” The method is applied to the Glaxy (mixture) dataset in order to compare it with the earlier approach of Friel and Pettitt (2008), resulting in (a) a selection of the mixture with five components and (b) much more variability between the estimated marginal  likelihoods for different numbers of components than in the earlier approach (where the estimates hardly move with k). And (c) a trimodal distribution on the means [and unimodal on the variances]. This example is however hard to interpret, since there are many contradicting interpretations for the various numbers of components in the model. (I recall Radford Neal giving an impromptu talks at an ICMS workshop in Edinburgh in 2001 to warn us we should not use the dataset without a clear(er) understanding of the astrophysics behind. If I remember well he was excluded all low values for the number of components as being inappropriate…. I also remember taking two days off with Peter Green to go climbing Craigh Meagaidh, as the only authorised climbing place around during the foot-and-mouth epidemics.) In conclusion, after presumably too light a read (I did not referee the paper!), it remains unclear to me why the combination of the various tempering schemes is bringing a noticeable improvement over the existing. At a given computational cost. As the temperature distribution does not seem to favour spending time in the regions where the target is most quickly changing. As such the algorithm rather appears as a special form of exchange algorithm.

ISBA 18 tidbits

Posted in Books, Mountains, pictures, Running, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , on July 2, 2018 by xi'an

Among a continuous sequence of appealing sessions at this ISBA 2018 meeting [says a member of the scientific committee!], I happened to attend two talks [with a wee bit of overlap] by Sid Chib in two consecutive sessions, because his co-author Ana Simoni (CREST) was unfortunately sick. Their work was about models defined by a collection of moment conditions, as often happens in econometrics, developed in a recent JASA paper by Chib, Shin, and Simoni (2017). With an extension about moving to defining conditional expectations by use of a functional basis. The main approach relies on exponentially tilted empirical likelihoods, which reminded me of the empirical likelihood [BCel] implementation we ran with Kerrie Mengersen and Pierre Pudlo a few years ago. As a substitute to ABC. This problematic made me wonder on how much Bayesian the estimating equation concept is, as it should somewhat involve a nonparametric prior under the moment constraints.

Note that Sid’s [talks and] papers are disconnected from ABC, as everything comes in closed form, apart from the empirical likelihood derivation, as we actually found in our own work!, but this could become a substitute model for ABC uses. For instance, identifying the parameter θ of the model by identifying equations. Would that impose too much input from the modeller? I figure I came with this notion mostly because of the emphasis on proxy models the previous day at ABC in ‘burgh! Another connected item of interest in the work is the possibility of accounting for misspecification of these moment conditions by introducing a vector of errors with a spike & slab distribution, although I am not sure this is 100% necessary without getting further into the paper(s) [blame conference pressure on my time].

Another highlight was attending a fantastic poster session Monday night on computational methods except I would have needed four more hours to get through every and all posters. This new version of ISBA has split the posters between two sites (great) and themes (not so great!), while I would have preferred more sites covering all themes over all nights, to lower the noise (still bearable this year) and to increase the possibility to check all posters of interest in a particular theme…

Mentioning as well a great talk by Dan Roy about assessing deep learning performances by what he calls non-vacuous error bounds. Namely, through PAC-Bayesian bounds. One major comment of his was about deep learning models being much more non-parametric (number of parameters rising with number of observations) than parametric models, meaning that generative adversarial constructs as the one I discussed a few days ago may face a fundamental difficulty as models are taken at face value there.

On closed-form solutions, a closed-form Bayes factor for component selection in mixture models by Fũqene, Steel and Rossell that resemble the Savage-Dickey version, without the measure theoretic difficulties. But with non-local priors. And closed-form conjugate priors for the probit regression model, using unified skew-normal priors, as exhibited by Daniele Durante. Which are product of Normal cdfs and pdfs, and which allow for closed form marginal likelihoods and marginal posteriors as well. (The approach is not exactly conjugate as the prior and the posterior are not in the same family.)

And on the final session I attended, there were two talks on scalable MCMC, one on coresets, which will require some time and effort to assimilate, by Trevor Campbell and Tamara Broderick, and another one using Poisson subsampling. By Matias Quiroz and co-authors. Which did not completely convinced me (but this was the end of a long day…)

All in all, this has been a great edition of the ISBA meetings, if quite intense due to a non-stop schedule, with a very efficient organisation that made parallel sessions manageable and poster sessions back to a reasonable scale [although I did not once manage to cross the street to the other session]. Being in unreasonably sunny Edinburgh helped a lot obviously! I am a wee bit disappointed that no one else follows my call to wear a kilt, but I had low expectations to start with… And too bad I missed the Ironman 70.3 Edinburgh by one day!