**A**nother short paper about relabelling in mixtures was arXived last week by Pauli and Torelli. They refer rather extensively to a previous paper by Puolamäki and Kaski (2009) of which I was not aware, paper attempting to get an unswitching sampler that does *not* exhibit any label switching, a concept I find most curious as I see no rigorous way to state that a sampler is *not* switching! This would imply spotting low posterior probability regions that the chain would cross. But I should check the paper nonetheless.

Because the G component mixture posterior is invariant under the G! possible permutations, I am somewhat undeciced as to what the authors of the current paper mean by estimating the difference between two means, like μ_{1}-μ_{2}. Since they object to using the output of a perfectly mixing MCMC algorithm and seem to prefer the one associated with a non-switching chain. Or by estimating the probability that a given observation is from a given component, since this is exactly 1/G by the permutation invariance property. In order to identify a partition of the data, they introduce a loss function on the joint allocations of pairs of observations, loss function that sounds quite similar to the one we used in our 2000 JASA paper on the label switching deficiencies of MCMC algorithms. (And makes me wonder why this work of us is not deemed relevant for the approach advocated in the paper!) Still, having read this paper, which I find rather poorly written, I have no clear understanding of how the authors give a precise meaning to a *specific* component of the mixture distribution. Or how the relabelling has to be conducted to *avoid* switching. That is, how the authors define their parameter space. Or their loss function. Unless one falls back onto the ordering of the means or the weights which has the drawback of not connecting with the levels sets of a particular mode of the posterior distribution, meaning that imposing the constraints result in a region that contains bits of several modes.

At some point the authors assume the data can be partitioned into K≤G groups such that there is a representative observation within each group never sharing a component (across MCMC iterations) with any of the other representatives. While this notion is label invariant, I wonder whether (a) this is possible on any MCMC outcome; (b) it indicates a positive or negative feature of the MCMC sampler.; and (c) what prevents the representatives to switch in harmony from one component to the next while preserving their perfect mutual exclusion… This however constitutes the advance in the paper, namely that component dependent quantities as estimated as those associated with a particular representative. Note that the paper contains no illustration, hence that the method may prove hard to impossible to implement!