**A**n X validated question as to why the MLE is not necessarily (well) covered by a posterior distribution. Even for a flat prior… Which in restrospect highlights the fact that the MLE (and the MAP) are invasive species in a Bayesian ecosystem. Since they do not account for the dominating measure. And hence do not fare well under reparameterisation. (As a very much to the side comment, I also managed to write an almost identical and simultaneous answer to the first answer to the question.)

## Archive for maximum likelihood estimation

## posterior distribution missing the MLE

Posted in Books, Kids, pictures, Statistics with tags Canadian Rockies, dominating measure, Eiffel Peak, Lake Louise, map, maximum a posteriori, maximum likelihood estimation, measure on April 25, 2019 by xi'an## almost uniform but far from straightforward

Posted in Books, Kids, Statistics with tags counterexample, cross validated, maximum likelihood estimation, order statistics, statistics exam, teaching, The American Statistician, triangular distribution on October 24, 2018 by xi'an**A** question on X validated about a [not exactly trivial] maximum likelihood for a triangular function led me to a fascinating case, as exposed by Olver in 1972 in The American Statistician. When considering an asymmetric triangle distribution on (0,þ), þ being fixed, the MLE for the location of the tip of the triangle is necessarily one of the observations [which was not the case in the original question on X validated ]. And not in an order statistic of rank j that does not stand in the j-th uniform partition of (0,þ). Furthermore there are opportunities for observing several global modes… In the X validated case of the symmetric triangular distribution over (0,θ), with ½θ as tip of the triangle, I could not figure an alternative to the pedestrian solution of looking separately at each of the (n+1) intervals where θ can stand and returning the associated maximum on that interval. Definitely a good (counter-)example about (in)sufficiency for class or exam!

## Implicit maximum likelihood estimates

Posted in Statistics with tags ABC, Approximate Bayesian computation, GANs, Hyvärinen score, Kullback-Leibler divergence, likelihood-free methods, maximum likelihood estimation, NIPS 2018, Peter Diggle, untractable normalizing constant, Wasserstein distance on October 9, 2018 by xi'an**A**n ‘Og’s reader pointed me to this paper by Li and Malik, which made it to arXiv after not making it to NIPS. While the NIPS reviews were not particularly informative and strongly discordant, the authors point out in the comments that they are available for the sake of promoting discussion. (As made clear in earlier posts, I am quite supportive of this attitude! *Disclaimer: I was not involved in an evaluation of this paper, neither for NIPS nor for another conference or journal!!*) Although the paper does not seem to mention ABC in the setting of implicit likelihoods and generative models, there is a reference to the early (1984) paper by Peter Diggle and Richard Gratton that is often seen as the ancestor of ABC methods. The authors point out numerous issues with solutions proposed for parameter estimation in such implicit models. For instance, for GANs, they signal that “minimizing the Jensen-Shannon divergence or the Wasserstein distance between the empirical data distribution and the model distribution does not necessarily minimize the same between the true data distribution and the model distribution.” (Not mentioning the particular difficulty with Bayesian GANs.) Their own solution is the implicit maximum likelihood estimator, which picks the value of the parameter θ bringing a simulated sample the closest to the observed sample. Closest in the sense of the Euclidean distance between both samples. Or between the minimum of several simulated samples and the observed sample. (The modelling seems to imply the availability of n>1 observed samples.) They advocate using a stochastic gradient descent approach for finding the optimal parameter θ which presupposes that the dependence between θ and the simulated samples is somewhat differentiable. (And this does not account for using a min, which would make differentiation close to impossible.) The paper then meanders in a lengthy discussion as to whether maximising the likelihood makes sense, with a rather naïve view on why using the empirical distribution in a Kullback-Leibler divergence does not make sense! What does not make sense is considering the finite sample approximation to the Kullback-Leibler divergence with the true distribution in my opinion.

## asymptotics of M³C²L

Posted in Statistics with tags asymptotics, fog, maximum likelihood estimation, M³C²L, Monte Carlo Statistical Methods, Pacific North West, Tofino, Vancouver Island on August 19, 2018 by xi'an**I**n a recent arXival, Blazej Miasojedow, Wojciech Niemiro and Wojciech Rejchel establish the convergence of a maximum likelihood estimator based on an MCMC approximation of the likelihood function. As in intractable normalising constants. The main result in the paper is a Central Limit theorem for the M³C²L estimator that incorporates an additional asymptotic variance term for the Monte Carlo error. Where both the sample size n and the number m of simulations go to infinity. Independently so. However, I do not fully perceive the relevance of using an MCMC chain to target an importance function [which is used in the approximation of the normalising constant or otherwise for the intractable likelihood], relative to picking an importance function h(.) that can be directly simulated.

## indecent exposure

Posted in Statistics with tags ABC, Bayesian optimisation, Bretagne, Brittany, exponential families, image analysis, image processing, inference, Lugano, maximum likelihood estimation, MCqMC 2018, pre-processing, Rennes on July 27, 2018 by xi'an**W**hile attending my last session at MCqMC 2018, in Rennes, before taking a train back to Paris, I was confronted by this radical opinion upon our previous work with Matt Moores (Warwick) and other coauthors from QUT, where the speaker, Maksym Byshkin from Lugano, defended a new approach for maximum likelihood estimation using novel MCMC methods. Based on the point fixe equation characterising maximum likelihood estimators for exponential families, when theoretical and empirical moments of the natural statistic are equal. Using a Markov chain with stationary distribution the said exponential family, the fixed point equation can be turned into a zero divergence equation, requiring simulation of pseudo-data from the model, which depends on the unknown parameter. Breaking this circular argument, the authors note that simulating pseudo-data that reproduce the observed value of the sufficient statistic is enough. Which is related with Geyer and Thomson (1992) famous paper about Monte Carlo maximum likelihood estimation. From there I was and remain lost as I cannot see why a derivative of the expected divergence with respect to the parameter θ can be computed when this divergence is found by Monte Carlo rather than exhaustive enumeration. And later used in a stochastic gradient move on the parameter θ… Especially when the null divergence is imposed on the parameter. In any case, the final slide shows an application to a large image and an Ising model, solving the problem (?) in 140 seconds and suggesting indecency, when our much slower approach is intended to produce a complete posterior simulation in this context.