Archive for MCMC convergence

assessing MCMC convergence

Posted in Books, Statistics, University life with tags , , , , , , , , , , , on June 6, 2019 by xi'an

When MCMC became mainstream in the 1990’s, there was a flurry of proposals to check, assess, and even guarantee convergence to the stationary distribution, as discussed in our MCMC book. Along with Chantal Guihenneuc and Kerrie Mengersen, we also maintained for a while a reviewww webpage categorising theses. Niloy Biswas and Pierre Jacob have recently posted a paper where they propose the use of couplings (and unbiased MCMC) towards deriving bounds on different metrics between the target and the current distribution of the Markov chain. Two chains are created from a given kernel and coupled with a lag of L, meaning that after a while, the two chains become one with a time difference of L. (The supplementary material contains many details on how to induce coupling.) The distance to the target can then be bounded by a sum of distances between the two chains until they merge. The above picture from the paper is a comparison a Polya-Urn sampler with several HMC samplers for a logistic target (not involving the Pima Indian dataset!). The larger the lag L the more accurate the bound. But the larger the lag the more expensive the assessment of how many steps are needed to convergence. Especially when considering that the evaluation requires restarting the chains from scratch and rerunning until they couple again, rather than continuing one run which can only brings the chain closer to stationarity and to being distributed from the target. I thus wonder at the possibility of some Rao-Blackwellisation of the simulations used in this assessment (while realising once more than assessing convergence almost inevitably requires another order of magnitude than convergence itself!). Without a clear idea of how to do it… For instance, keeping the values of the chain(s) at the time of coupling is not directly helpful to create a sample from the target since they are not distributed from that target.

[Pierre also wrote a blog post about the paper on Statisfaction that is definitely much clearer and pedagogical than the above.]

EntropyMCMC [R package]

Posted in Statistics with tags , , , , , , , , , , , , on March 26, 2019 by xi'an

My colleague from the Université d’Orléans, Didier Chauveau, has just published on CRAN a new R package called EntropyMCMC, which contains convergence assessment tools for MCMC algorithms, based on non-parametric estimates of the Kullback-Leibler divergence between current distribution and target. (A while ago, quite a while ago!, we actually collaborated with a few others on the Springer-Verlag Lecture Note #135 Discretization and MCMC convergence assessments.) This follows from a series of papers by Didier Chauveau and Pierre Vandekerkhove that started with a nearest neighbour entropy estimate. The evaluation of this entropy is based on N iid (parallel) chains, which involves a parallel implementation. While the missing normalising constant is overwhelmingly unknown, the authors this is not a major issue “since we are mostly interested in the stabilization” of the entropy distance. Or in the comparison of two MCMC algorithms. [Disclaimer: I have not experimented with the package so far, hence cannot vouch for its performances over large dimensions or problematic targets, but would as usual welcome comments and feedback on readers’ experiences.]

revisiting the Gelman-Rubin diagnostic

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , on January 23, 2019 by xi'an

Just before Xmas, Dootika Vats (Warwick) and Christina Knudson arXived a paper on a re-evaluation of the ultra-popular 1992 Gelman and Rubin MCMC convergence diagnostic. Which compares within-variance and between-variance on parallel chains started from hopefully dispersed initial values. Or equivalently an under-estimating and an over-estimating estimate of the MCMC average. In this paper, the authors take advantage of the variance estimators developed by Galin Jones, James Flegal, Dootika Vats and co-authors, which are batch mean estimators consistently estimating the asymptotic variance. They also discuss the choice of a cut-off on the ratio R of variance estimates, i.e., how close to one need it be? By relating R to the effective sample size (for which we also have reservations), which gives another way of calibrating the cut-off. The main conclusion of the study is that the recommended 1.1 bound is too large for a reasonable proximity to the true value of the Bayes estimator (Disclaimer: The above ABCruise header is unrelated with the paper, apart from its use of the Titanic dataset!)

In fact, I have other difficulties than setting the cut-off point with the original scheme as a way to assess MCMC convergence or lack thereof, among which

  1. its dependence on the parameterisation of the chain and on the estimation of a specific target function
  2. its dependence on the starting distribution which makes the time to convergence not absolutely meaningful
  3. the confusion between getting to stationarity and exploring the whole target
  4. its missing the option to resort to subsampling schemes to attain pseudo-independence or scale time to convergence (albeit see 3. above)
  5. a potential bias brought by the stopping rule.

Markov Chains [not a book review]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , on January 14, 2019 by xi'an

As Randal Douc and Éric Moulines are both very close friends and two authors of this book on Markov chains,  I cannot engage into a regular book review! Judging from the table of contents, the coverage is not too dissimilar to the now classic Markov chain Stochastic Stability book by Sean Meyn and the late Richard Tweedie (1994), called the Bible of Markov chains by Peter Glynn, with more emphasis on convergence matters and a more mathematical perspective. The 757 pages book also includes a massive appendix on maths and probability background. As indicated in the preface, “the reason [the authors] thought it would be useful to write a new book is to survey some of the developments made during the 25 years that have elapsed since the publication of Meyn and Tweedie (1993b).” Connecting with the theoretical developments brought by MCMC methods. Like subgeometric rates of convergence to stationarity, sample paths, limit theorems, and concentration inequalities. The book also reflects on the numerous contributions of the authors to the field. Hence a perfect candidate for teaching Markov chains to mathematically well-prepared. graduate audiences. Congrats to the authors!

“more Bayesian” GANs

Posted in Books, Statistics with tags , , , , on December 21, 2018 by xi'an
On X validated, I got pointed to this recent paper by He, Wang, Lee and Tiang, that proposes a new form of Bayesian GAN. Although I do not see it as really Bayesian, as explained below.
“[The] existing Bayesian method (Saatchi & Wilson, 2017) may lead to incompatible conditionals, which suggest that the underlying joint distribution actually does not exist.”
The difference with the Bayesian GANs of Saatchi & Wilson (2017) [with Saatchi’s name being consistently misspelled throughout] is in the definition of the likelihood function, function of both generative and discriminatory parameters. As in Bissiri et al. (2013), the likelihood is replaced by the exponentiated loss function, or rather functions, which are computed with expected or pluggin distributions or discriminating functions. Expectations under the respective priors and for the observed data (?). Meaning there are “two likelihoods” for the same data, one being the inverse of the other in the minimax GAN case. Further, the prior on the generative parameter is actually of the prior feedback category:  at each iteration, the authors “use the generator distribution in the previous time step as a prior for the next time step”. Which makes me wonder how they avoid ending up with a Dirac “prior”. (Even curiouser, the prior on the discriminating parameter, which is not a genuine component of the statistical model, is a flat prior across iterations.) The convergence result established in the paper is that, if the (true) data-generating model can be written as the marginal of the assumed parametric generative model against an “optimal” distribution, then the discriminating function converges to non-discrimination between (true) data-generating model and the assumed parametric generative model. This somehow negates the Bayesian side of the affair, as convergence to a point mass does not produce a Bayesian outcome on the parameters of the model, or on the comparison between true and assumed models. The paper also demonstrates the incompatibility of the two conditionals used by Saatchi & Wilson (2017) and provides a formal example [missing any form of data?] where the associated Bayesian GAN does not converge to the true value behind the model. But the issue is more complex in my opinion in that using two incompatible conditionals does not mean that the associated Markov chain is transient (as e.g. on a compact space).

Bayesian GANs [#2]

Posted in Books, pictures, R, Statistics with tags , , , , , , , , , , , , on June 27, 2018 by xi'an

As an illustration of the lack of convergence of the Gibbs sampler applied to the two “conditionals” defined in the Bayesian GANs paper discussed yesterday, I took the simplest possible example of a Normal mean generative model (one parameter) with a logistic discriminator (one parameter) and implemented the scheme (during an ISBA 2018 session). With flat priors on both parameters. And a Normal random walk as Metropolis-Hastings proposal. As expected, since there is no stationary distribution associated with the Markov chain, simulated chains do not exhibit a stationary pattern,

And they eventually reach an overflow error or a trapping state as the log-likelihood gets approximately to zero (red curve).

Too bad I missed the talk by Shakir Mohammed yesterday, being stuck on the Edinburgh by-pass at rush hour!, as I would have loved to hear his views about this rather essential issue…

convergences of MCMC and unbiasedness

Posted in pictures, Statistics, University life with tags , , , , , , , , , on January 16, 2018 by xi'an

During his talk on unbiased MCMC in Dauphine today, Pierre Jacob provided a nice illustration of the convergence modes of MCMC algorithms. With the stationary target achieved after 100 Metropolis iterations, while the mean of the target taking much more iterations to be approximated by the empirical average. Plus a nice connection between coupling time and convergence. Convergence to the target.During Pierre’s talk, some simple questions came to mind, from developing an “impatient user version”, as in perfect sampling, in order  to stop chains that run “forever”,  to optimising parallelisation in order to avoid problems of asynchronicity. While the complexity of coupling increases with dimension and the coupling probability goes down, the average coupling time varies but an unexpected figure is that the expected cost per iteration is of 2 simulations, irrespective of the chosen kernels. Pierre also made a connection with optimal transport coupling and stressed that the maximal coupling was for the proposal and not for the target.