Archive for MCMC convergence

more air for MCMC

Posted in Books, R, Statistics with tags , , , , , , , , , , , , , , on May 30, 2021 by xi'an

Aki Vehtari, Andrew Gelman, Dan Simpson, Bob Carpenter, and Paul-Christian Bürkner have just published a Bayesian Analysis paper about using an improved R factor for MCMC convergence assessment. From the early days of MCMC, convergence assessment has been a recurring (and recurrent!) question in the community. First leading to a flurry of proposals, [which Kerrie, Chantal, and myself reviewwwed in the Valencia 1998 proceedings], and then slowly disintegrating under the onslaughts of reality—i.e. that none could not be 100% foolproof in full generality—…. This included the (possibly now forgotten) single-versus-multiple-chains debate between Charlie Geyer [for single] and Andrew Gelman and Don Rubin [for multiple]. The later introduced an analysis-of-variance R factor, which remains quite popular up to this day, in part for being part of most MCMC software, like BUGS. That this R may fail to identify convergence issues, even in the more recent split version, does not come as a major surprise, since any situation with a long-term influence of the starting distribution may well fail to identify missing (significant) parts of the posterior support. (It is thus somewhat disconcerting to me to see that the main recommendation is to move the bound on R from 1.1 to 1.01, reminding me to some extent of a recent proposal to move the null rejection boundary from 0.05 to 0.005…) Similarly, the ESS may prove a poor signal for convergence or lack thereof, especially because the approximation of the asymptotic variance relies on stationarity assumptions. While multiplying the monitoring tools (as in CODA) helps with identifying convergence issues, looking at a single convergence indicator is somewhat like looking only at a frequentist estimator! (And with greater automation comes greater responsibility—in keeping a critical perspective.)

Looking for a broader perspective, I thus wonder at what we would instead need to assess the lack of convergence of an MCMC chain without much massaging of the said chain. An evaluation of the (Kullback, Wasserstein, or else) distance between the distribution of the chain at iteration n or across iterations, and the true target? A percentage of the mass of the posterior visited so far, which relates to estimating the normalising constant, with a relatively vast array of solutions made available in the recent years? I remain perplexed and frustrated by the fact that, 30 years later, the computed values of the visited likelihoods are not better exploited. Through for instance machine-learning approximations of the target. that could themselves be utilised for approximating the normalising constant and potential divergences from other approximations.

coupling, donkeys, coins & fish meet in Paris

Posted in Statistics with tags , , , , , , , , , , , , , , , , , , , , , , on March 22, 2021 by xi'an

assessing MCMC convergence

Posted in Books, Statistics, University life with tags , , , , , , , , , , , on June 6, 2019 by xi'an

When MCMC became mainstream in the 1990’s, there was a flurry of proposals to check, assess, and even guarantee convergence to the stationary distribution, as discussed in our MCMC book. Along with Chantal Guihenneuc and Kerrie Mengersen, we also maintained for a while a reviewww webpage categorising theses. Niloy Biswas and Pierre Jacob have recently posted a paper where they propose the use of couplings (and unbiased MCMC) towards deriving bounds on different metrics between the target and the current distribution of the Markov chain. Two chains are created from a given kernel and coupled with a lag of L, meaning that after a while, the two chains become one with a time difference of L. (The supplementary material contains many details on how to induce coupling.) The distance to the target can then be bounded by a sum of distances between the two chains until they merge. The above picture from the paper is a comparison a Polya-Urn sampler with several HMC samplers for a logistic target (not involving the Pima Indian dataset!). The larger the lag L the more accurate the bound. But the larger the lag the more expensive the assessment of how many steps are needed to convergence. Especially when considering that the evaluation requires restarting the chains from scratch and rerunning until they couple again, rather than continuing one run which can only brings the chain closer to stationarity and to being distributed from the target. I thus wonder at the possibility of some Rao-Blackwellisation of the simulations used in this assessment (while realising once more than assessing convergence almost inevitably requires another order of magnitude than convergence itself!). Without a clear idea of how to do it… For instance, keeping the values of the chain(s) at the time of coupling is not directly helpful to create a sample from the target since they are not distributed from that target.

[Pierre also wrote a blog post about the paper on Statisfaction that is definitely much clearer and pedagogical than the above.]

EntropyMCMC [R package]

Posted in Statistics with tags , , , , , , , , , , , , on March 26, 2019 by xi'an

My colleague from the Université d’Orléans, Didier Chauveau, has just published on CRAN a new R package called EntropyMCMC, which contains convergence assessment tools for MCMC algorithms, based on non-parametric estimates of the Kullback-Leibler divergence between current distribution and target. (A while ago, quite a while ago!, we actually collaborated with a few others on the Springer-Verlag Lecture Note #135 Discretization and MCMC convergence assessments.) This follows from a series of papers by Didier Chauveau and Pierre Vandekerkhove that started with a nearest neighbour entropy estimate. The evaluation of this entropy is based on N iid (parallel) chains, which involves a parallel implementation. While the missing normalising constant is overwhelmingly unknown, the authors this is not a major issue “since we are mostly interested in the stabilization” of the entropy distance. Or in the comparison of two MCMC algorithms. [Disclaimer: I have not experimented with the package so far, hence cannot vouch for its performances over large dimensions or problematic targets, but would as usual welcome comments and feedback on readers’ experiences.]

revisiting the Gelman-Rubin diagnostic

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , on January 23, 2019 by xi'an

Just before Xmas, Dootika Vats (Warwick) and Christina Knudson arXived a paper on a re-evaluation of the ultra-popular 1992 Gelman and Rubin MCMC convergence diagnostic. Which compares within-variance and between-variance on parallel chains started from hopefully dispersed initial values. Or equivalently an under-estimating and an over-estimating estimate of the MCMC average. In this paper, the authors take advantage of the variance estimators developed by Galin Jones, James Flegal, Dootika Vats and co-authors, which are batch mean estimators consistently estimating the asymptotic variance. They also discuss the choice of a cut-off on the ratio R of variance estimates, i.e., how close to one need it be? By relating R to the effective sample size (for which we also have reservations), which gives another way of calibrating the cut-off. The main conclusion of the study is that the recommended 1.1 bound is too large for a reasonable proximity to the true value of the Bayes estimator (Disclaimer: The above ABCruise header is unrelated with the paper, apart from its use of the Titanic dataset!)

In fact, I have other difficulties than setting the cut-off point with the original scheme as a way to assess MCMC convergence or lack thereof, among which

  1. its dependence on the parameterisation of the chain and on the estimation of a specific target function
  2. its dependence on the starting distribution which makes the time to convergence not absolutely meaningful
  3. the confusion between getting to stationarity and exploring the whole target
  4. its missing the option to resort to subsampling schemes to attain pseudo-independence or scale time to convergence (albeit see 3. above)
  5. a potential bias brought by the stopping rule.