Archive for MCMC

coordinate sampler on-line

Posted in Statistics with tags , , , , , , on March 13, 2020 by xi'an

unbiased MCMC with couplings [4pm, 26 Feb., Paris]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , on February 24, 2020 by xi'an

On Wednesday, 26 February, Pierre Jacob (Havard U, currently visiting Paris-Dauphine) is giving a seminar on unbiased MCMC methods with couplings at AgroParisTech, bvd Claude Bernard, Paris 5ième, Room 32, at 4pm in the All about that Bayes seminar.

MCMC methods yield estimators that converge to integrals of interest in the limit of the number of iterations. This iterative asymptotic justification is not ideal; first, it stands at odds with current trends in computing hardware, with increasingly parallel architectures; secondly, the choice of “burn-in” or “warm-up” is arduous. This talk will describe recently proposed estimators that are unbiased for the expectations of interest while having a finite computing cost and a finite variance. They can thus be generated independently in parallel and averaged over. The method also provides practical upper bounds on the distance (e.g. total variation) between the marginal distribution of the chain at a finite step and its invariant distribution. The key idea is to generate “faithful” couplings of Markov chains, whereby pairs of chains coalesce after a random number of iterations. This talk will provide an overview of this line of research.

Roberto Casarin in Warwick [joint Stats/Econometrics seminar series]

Posted in Statistics with tags , , , , , , , on February 11, 2020 by xi'an

My friend, coauthor and former student Roberto Casarin (da Ca’Foscari Venezia) is giving a talk tomorrow in Warwick:

Bayesian Dynamic Tensor Regression (joint with Billio, M., Iacopini, M., and Kaufmann, S.)

Tensor-valued data (i.e. multidimensional data) are becoming increasingly available and call for suitable econometric tools. We propose a new dynamic linear regression model for tensor-valued response variables and covariates that encompasses some well-known multivariate models as special cases. We exploit the PARAFAC low-rank decomposition for providing a parsimonious parametrization and to incorporate sparsity effects. Our contribution is twofold: first, we extend multivariate econometric models to account for tensor-valued response and covariates; second, we define a tensor autoregressive process (TAR) and the associated impulse response function for studying shock propagation. Inference is carried out in the Bayesian framework combined with Monte Carlo Markov Chain (MCMC). We apply the TAR model for studying time-varying multilayer economic networks concerning international trade and international capital stocks. We provide an impulse response analysis for assessing propagation of trade and financial shocks across countries, over time and between layers.

The seminar will take place on Thursday Feb. 13 at 14:00 in OC0.01 (Oculus), University of Warwick, Coventry, UK.

MCMC, with common misunderstandings

Posted in Books, pictures, R, Statistics, University life with tags , , , , , , , , , , , , on January 27, 2020 by xi'an

As I was asked to write a chapter on MCMC methods for an incoming Handbook of Computational Statistics and Data Science, published by Wiley, rather than cautiously declining!, I decided to recycle the answers I wrote on X validated to what I considered to be the most characteristic misunderstandings about MCMC and other computing methods, using as background the introduction produced by Wu Changye in his PhD thesis. Waiting for the opinion of the editors of the Handbook on this Q&A style. The outcome is certainly lighter than other recent surveys like the one we wrote with Peter Green, Krys Latuszinski, and Marcelo Pereyra, for Statistics and Computing, or the one with Victor Elvira, Nick Tawn, and Changye Wu.

an elegant sampler

Posted in Books, Kids, R, University life with tags , , , , , , , on January 15, 2020 by xi'an

Following an X validated question on how to simulate a multinomial with fixed average, W. Huber produced a highly elegant and efficient resolution with the compact R code

tabulate(*n, s-n) %% n + 1, n) + 1

where k is the number of classes, n the number of draws, and s equal to n times the fixed average. The R function is an alternative to sample that seems faster. Breaking the outcome of*n, s-n)

as nonzero positions in an n x (k-1) matrix and adding a adding a row of n 1’s leads to a simulation of integers between 1 and k by counting the 1’s in each of the n columns, which is the meaning of the above picture. Where the colour code is added after counting the number of 1’s. Since there are s 1’s in this matrix, the sum is automatically equal to s. Since the s-n positions are chosen uniformly over the n x (k-1) locations, the outcome is uniform. The rest of the R code is a brutally efficient way to translate the idea into a function. (By comparison, I brute-forced the question by suggesting a basic Metropolis algorithm.)


Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , , , , on January 10, 2020 by xi'an

First, I really have to congratulate my friend Jim Hobert for a great organisation of the meeting adopting my favourite minimalist principles (no name tag, no “goodies” apart from the conference schedule, no official talks). Without any pretense at objectivity, I also appreciated very much the range of topics and the sweet frustration of having to choose between two or three sessions each time. Here are some notes taken during some talks (with no implicit implication for the talks no mentioned, re. above frustration! as well as very short nights making sudden lapse in concentration highly likely).

On Day 1, Paul Fearnhead’s inaugural plenary talk was on continuous time Monte Carlo methods, mostly bouncy particle and zig-zag samplers, with a detailed explanation on the simulation of the switching times which likely brought the audience up to speed even if they had never heard of them. And an opening on PDMPs used as equivalents to reversible jump MCMC, reminding me of the continuous time (point process) solutions of Matthew Stephens for mixture inference (and of Preston, Ripley, Møller).

The same morn I heard of highly efficient techniques to handle very large matrices and p>n variables selections by Akihiko Nishimura and Ruth Baker on a delayed acceptance ABC, using a cheap proxy model. Somewhat different from indirect inference. I found the reliance on ESS somewhat puzzling given the intractability of the likelihood (and the low reliability of the frequency estimate) and the lack of connection with the “real” posterior. At the same ABC session, Umberto Picchini spoke on a joint work with Richard Everitt (Warwick) on linking ABC and pseudo-marginal MCMC by bootstrap. Actually, the notion of ABC likelihood was already proposed as pseudo-marginal ABC by Anthony Lee, Christophe Andrieu and Arnaud Doucet in the discussion of Fearnhead and Prangle (2012) but I wonder at the focus of being unbiased when the quantity is not the truth, i.e. the “real” likelihood. It would seem more appropriate to attempt better kernel estimates on the distribution of the summary itself. The same session also involved David Frazier who linked our work on ABC for misspecified models and an on-going investigation of synthetic likelihood.

Later, there was a surprise occurrence of the Bernoulli factory in a talk by Radu Herbei on Gaussian process priors with accept-reject algorithms, leading to exact MCMC, although the computing implementation remains uncertain. And several discussions during the poster session, incl. one on the planning of a 2021 workshop in Oaxaca centred on objective Bayes advances as we received acceptance of our proposal by BIRS today!

On Day 2, David Blei gave a plenary introduction to variational Bayes inference and latent Dirichlet allocations, somewhat too introductory for my taste although other participants enjoyed this exposition. He also mentioned a recent JASA paper on the frequentist consistency of variational Bayes that I should check. Speaking later with PhD students, they really enjoyed this opening on an area they did not know that well.

A talk by Kengo Kamatani (whom I visited last summer) on improved ergodicity rates for heavy tailed targets and Crank-NIcholson modifications to the random walk proposal (which uses an AR(1) representation instead of the random walk). With the clever idea of adding the scale of the proposal as an extra parameter with a prior of its own. Gaining one order of magnitude in the convergence speed (i.e. from d to 1 and from d² to d, where d is the dimension), which is quite impressive (and just published in JAP).Veronica Rockova linked Bayesian variable selection and machine learning via ABC, with conditions on the prior for model consistency. And a novel approach using part of the data to learn an ABC partial posterior, which reminded me of the partial  Bayes factors of the 1990’s although it is presumably unrelated. And a replacement of the original rejection ABC via multi-armed bandits, where each variable is represented by an arm, called ABC Bayesian forests. Recalling the simulation trick behind Thompson’s approach, reproduced for the inclusion or exclusion of variates and producing a fixed estimate for the (marginal) inclusion probabilities, which makes it sound like a prior-feeback form of empirical Bayes. Followed by a talk of Gregor Kastner on MCMC handling of large time series with specific priors and a massive number of parameters.

The afternoon also had a wealth of exciting talks and missed opportunities (in the other sessions!). Which ended up with a strong if unintended French bias since I listened to Christophe Andrieu, Gabriel Stolz, Umut Simsekli, and Manon Michel on different continuous time processes, with Umut linking GANs, multidimensional optimal transport, sliced-Wasserstein, generative models, and new stochastic differential equations. Manon Michel gave a highly intuitive talk on creating non-reversibility, getting rid of refreshment rates in PDMPs to kill any form of reversibility.

off to BayesComp 20, Gainesville

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , on January 7, 2020 by xi'an