**C**olin Wei and Iain Murray arXived a new version of their paper on doubly-intractable distributions, which is to be presented at AISTATS. It builds upon the Russian roulette estimator of Lyne et al. (2015), which itself exploits the debiasing technique of McLeish et al. (2011) [found earlier in the physics literature as in Carter and Cashwell, 1975, according to the current paper]. Such an unbiased estimator of the inverse of the normalising constant can be used for pseudo-marginal MCMC, except that the estimator is sometimes negative and has to be so as proved by Pierre Jacob and co-authors. As I discussed in my post on the Russian roulette estimator, replacing the negative estimate with its absolute value does not seem right because a negative value indicates that the quantity is close to zero, hence replacing it with zero would sound more appropriate. Wei and Murray start from the property that, while the expectation of the importance weight is equal to the normalising constant, the expectation of the inverse of the importance weight converges to the inverse of the weight for an MCMC chain. This however sounds like an harmonic mean estimate because the property would also stand for any substitute to the importance density, as it only requires the density to integrate to one… As noted in the paper, the variance of the resulting Roulette estimator “will be high” or even infinite. Following Glynn et al. (2014), the authors build a coupled version of that solution, which key feature is to cut the higher order terms in the debiasing estimator. This does not guarantee finite variance or positivity of the estimate, though. In order to decrease the variance (assuming it is finite), backward coupling is introduced, with a Rao-Blackwellisation step using our 1996 Biometrika derivation. Which happens to be of lower cost than the standard Rao-Blackwellisation in that special case, O(N) versus O(N²), N being the stopping rule used in the debiasing estimator. Under the assumption that the *inverse* importance weight has finite expectation [wrt the importance density], the resulting backward-coupling Russian roulette estimator can be proven to be unbiased, as it enjoys a finite expectation. (As in the generalised harmonic mean case, the constraint imposes thinner tails on the importance function, which then hampers the convergence of the MCMC chain.) No mention is made of achieving finite variance for those estimators, which again is a serious concern due to the similarity with harmonic means…

## Archive for MCMC

## Russian roulette still rolling

Posted in Statistics with tags AISTATS 2017, Biometrika, coupling, debiasing, doubly intractable problems, harmonic mean estimator, MCMC, MCMC algorithm, normalising constant, Peter Glynn, pseudo-marginal MCMC, Rao-Blackwellisation, Russian roulette on March 22, 2017 by xi'an## SMC on a sequence of increasing dimension targets

Posted in Statistics with tags birth-and-death process, finite mixtures, Jacobian, MCMC, PMC, population Monte Carlo, reversible jump MCMC, sequential Monte Carlo, simulated annealing, SMC on February 15, 2017 by xi'an**R**ichard Everitt and co-authors have arXived a preliminary version of a paper entitled *Sequential* *Bayesian inference for mixture models and the coalescent using sequential Monte Carlo samplers with transformations*. The central notion is an SMC version of the Carlin & Chib (1995) completion in the comparison of models in different dimensions. Namely to create auxiliary variables for each model in such a way that the dimension of the completed models are all the same. (Reversible jump MCMC à la Peter Green (1995) can also be interpreted this way, even though only relevant bits of the completion are used in the transitions.) I find the paper and the topic most interesting if only because it relates to earlier papers of us on population Monte Carlo. It also brought to my awareness the paper by Karagiannis and Andrieu (2013) on annealed reversible jump MCMC that I had missed at the time it appeared. The current paper exploits this annealed expansion in the devising of the moves. (Sequential Monte Carlo on a sequence of models with increasing dimension has been studied in the past.)

The way the SMC is described in the paper, namely, reweight-subsample-move, does not strike me as the most efficient as I would try to instead move-reweight-subsample, using a relevant move that incorporate the new model and hence enhance the chances of not rejecting.

One central application of the paper is mixture models with an unknown number of components. The SMC approach applied to this problem means creating a new component at each iteration t and moving the existing particles after adding the parameters of the new component. Since using the prior for this new part is unlikely to be at all efficient, a split move as in Richardson and Green (1997) can be considered, which brings back the dreaded Jacobian of RJMCMC into the picture! Here comes an interesting caveat of the method, namely that the split move forces a choice of the split component of the mixture. However, this does not appear as a strong difficulty, solved in the paper by auxiliary [index] variables, but possibly better solved by a mixture representation of the proposal, as in our PMC [population Monte Carlo] papers. Which also develop a family of SMC algorithms, incidentally. We found there that using a mixture representation of the proposal achieves a provable variance reduction.

“This puts a requirement on TSMC that the single transition it makes must be successful.”

As pointed by the authors, the transformation SMC they develop faces the drawback that a given model is only explored once in the algorithm, when moving to the next model. On principle, there would be nothing wrong in including regret steps, retracing earlier models in the light of the current one, since each step is an importance sampling step valid on its own right. But SMC also offers a natural albeit potentially high-varianced approximation to the marginal likelihood, which is quite appealing when comparing with an MCMC outcome. However, it would have been nice to see a comparison with alternative estimates of the marginal in the case of mixtures of distributions. I also wonder at the comparative performances of a dual approach that would be sequential in the number of observations as well, as in Chopin (2004) or our first population Monte Carlo paper (Cappé et al., 2005), since subsamples lead to tempered versions of the target and hence facilitate moves between models, being associated with flatter likelihoods.

## MCM 2017

Posted in pictures, Statistics, Travel, University life with tags Approximate Bayesian computation, Canada, MCMC, Monte Carlo integration, Monte Carlo Statistical Methods, Montréal, probabilistic numerics, Québec, Robert Charlebois, scalability, stochastic gradient on February 10, 2017 by xi'an**J**e reviendrai à Montréal, as the song by Robert Charlebois goes, for the MCM 2017 meeting there, on July 3-7. I was invited to give a plenary talk by the organisers of the conference . Along with

Steffen Dereich, WWU Münster, Germany

Paul Dupuis, Brown University, Providence, USA

Mark Girolami, Imperial College London, UK

Emmanuel Gobet, École Polytechnique, Palaiseau, France

Aicke Hinrichs, Johannes Kepler University, Linz, Austria

Alexander Keller, NVIDIA Research, Germany

Gunther Leobacher, Johannes Kepler University, Linz, Austria

Art B. Owen, Stanford University, USA

Note that, while special sessions are already selected, including oneon Stochastic Gradient methods for Monte Carlo and Variational Inference, organised by Victor Elvira and Ingmar Schuster (my only contribution to this session being the suggestion they organise it!), proposals for contributed talks will be selected based on one-page abstracts, to be submitted by March 1.

## non-reversible Langevin samplers

Posted in Books, pictures, Statistics, Travel, University life with tags England, Foster-Lyapunov assumptions, geometric ergodicity, Langevin diffusion, Lie-Trotter splitting, MCMC, Metropolis-Hastings algorithm, non-reversible diffusion, Oxford, reversibility, train on February 6, 2017 by xi'an**I**n the train to Oxford yesterday night, I read through the recently arXived Duncan et al.’s *Nonreversible Langevin Samplers: Splitting Schemes, Analysis and Implementation*. Standing up the whole trip in the great tradition of British trains.

The paper is fairly theoretical and full of Foster-Lyapunov assumptions but aims at defending an approach based on a non-reversible diffusion. One idea is that the diffusion based on the drift {∇ log π(x) + γ(x)} is associated with the target π provided

∇ . {π(x)γ(x)} = 0

which holds for the Langevin diffusion when γ(x)=0, but produces a non-reversible process in the alternative. The Langevin choice γ(x)=0 happens to be the worst possible when considering the asymptotic variance. In practice however the diffusion need be discretised, which induces an approximation that may be catastrophic for convergence if not corrected, and a relapse into reversibility if corrected by Metropolis. The proposal in the paper is to use a Lie-Trotter splitting I had never heard of before to split between reversible [∇ log π(x)] and non-reversible [γ(x)] parts of the process. The deterministic part is chosen as γ(x)=∇ log π(x) [but then what is the point since this is Langevin?] or as the gradient of a power of π(x). Although I was mostly lost by that stage, the paper then considers the error induced by a numerical integrator related with this deterministic part, towards deriving asymptotic mean and variance for the splitting scheme. On the unit hypercube. Although the paper includes a numerical example for the warped normal target, I find it hard to visualise the implementation of this scheme. Having obviously not heeded Nicolas’ and James’ advice, the authors also analyse the Pima Indian dataset by a logistic regression!)

## a well-hidden E step

Posted in Books, Kids, pictures, R, Statistics with tags ABC, cross validated, EM algorithm, hidden Markov models, MCEM, MCMC, Monte Carlo approximations, R, simulation, summary statistics on February 3, 2017 by xi'an**A** recent question on X validated ended up being quite interesting! The model under consideration is made of parallel Markov chains on a finite state space, all with the same Markov transition matrix, **M**, which turns into a hidden Markov model when the only summary available is the number of chains in a given state at a given time. When writing down the EM algorithm, the E step involves the expected number of moves from a given state to a given state at a given time. The conditional distribution of those numbers of chains is a product of multinomials across times and starting states, with no Markov structure since the number of chains starting from a given state is known at each instant. Except that those multinomials are constrained by the number of “arrivals” in each state at the next instant and that this makes the computation of the expectation intractable, as far as I can see.

A solution by Monte Carlo EM means running the moves for each instant under the above constraints, which is thus a sort of multinomial distribution with fixed margins, enjoying a closed-form expression but for the normalising constant. The direct simulation soon gets too costly as the number of states increases and I thus considered a basic Metropolis move, using one margin (row or column) or the other as proposal, with the correction taken on another margin. This is very basic but apparently enough for the purpose of the exercise. If I find time in the coming days, I will try to look at the ABC resolution of this problem, a logical move when starting from non-sufficient statistics!

## weakly informative reparameterisations for location-scale mixtures

Posted in Books, pictures, R, Statistics, University life with tags compound Gaussian distribution, compound Poisson distribution, MCMC, Metropolis-Hastings algorithm, mixtures of distributions, Monte Carlo Statistical Methods, reparameterisation on January 19, 2017 by xi'an**W**e have been working towards a revision of our reparameterisation paper for quite a while now and too advantage of Kate Lee visiting Paris this fortnight to make a final round: we have now arXived (and submitted) the new version. The major change against the earlier version is the extension of the approach to a large class of models that include infinitely divisible distributions, compound Gaussian, Poisson, and exponential distributions, and completely monotonic densities. The concept remains identical: change the parameterisation of a mixture from a component-wise decomposition to a construct made of the first moment(s) of the distribution and of component-wise objects constrained by the moment equation(s). There is of course a bijection between both parameterisations, but the constraints appearing in the latter produce compact parameter spaces for which (different) uniform priors can be proposed. While the resulting posteriors are no longer conjugate, even conditional on the latent variables, standard Metropolis algorithms can be implemented to produce Monte Carlo approximations of these posteriors.

## anytime algorithm

Posted in Books, Statistics with tags anytime algorithm, Cambridge University, computing cost, exchangeability, Harvard University, MCMC, SMC, SMC², University of Oxford, University of Warwick on January 11, 2017 by xi'an**L**awrence Murray, Sumeet Singh, Pierre Jacob, and Anthony Lee (Warwick) recently arXived a paper on Anytime Monte Carlo. (The earlier post on this topic is no coincidence, as Lawrence had told me about this problem when he visited Paris last Spring. Including a forced extension when his passport got stolen.) The difficulty with anytime algorithms for MCMC is the lack of exchangeability of the MCMC sequence (except for formal settings where regeneration can be used).

When accounting for duration of computation between steps of an MCMC generation, the Markov chain turns into a Markov jump process, whose stationary distribution α is biased by the average delivery time. Unless it is constant. The authors manage this difficulty by interlocking the original chain with a secondary chain so that even- and odd-index chains are independent. The secondary chain is then discarded. This provides a way to run an anytime MCMC. The principle can be extended to K+1 chains, run one after the other, since only one of those chains need be discarded. It also applies to SMC and SMC². The appeal of anytime simulation in this particle setting is that resampling is no longer a bottleneck. Hence easily distributed among processors. One aspect I do not fully understand is how the computing budget is handled, since allocating the same real time to each iteration of SMC seems to envision each target in the sequence as requiring the same amount of time. (An interesting side remark made in this paper is the lack of exchangeability resulting from elaborate resampling mechanisms, lack I had not thought of before.)