**An** interesting query on (or from) X validated: given a Bernoulli mixture where the weights are known and the probabilities are jointly drawn from a Dirichlet, what is the most efficient from running a Gibbs sampler including the latent variables to running a basic Metropolis-Hastings algorithm based on the mixture representation to running a collapsed Gibbs sampler that only samples the indicator variables… I provided a closed form expression for the collapsed target, but believe that the most efficient solution is based on the mixture representation!

## Archive for mixtures

## Bernoulli mixtures

Posted in pictures, Statistics, University life with tags Bernoulli mixture, cross validated, Gibbs sampler, Helvetia, Jakob Bernoulli, Metropolis-Hastings algorithm, mixtures, stamp on October 30, 2019 by xi'an## I thought I did make a mistake but I was wrong…

Posted in Books, Kids, Statistics with tags Charles M. Schulz, confluent hypergeometric function, course, ENSAE, exercises, Gradsteyn, inverse normal distribution, MCMC, mixtures, Monte Carlo Statistical Methods, Peanuts, Ryzhik, typos on November 14, 2018 by xi'an**O**ne of my students in my MCMC course at ENSAE seems to specialise into spotting typos in the Monte Carlo Statistical Methods book as he found an issue in every problem he solved! He even went back to a 1991 paper of mine on Inverse Normal distributions, inspired from a discussion with an astronomer, Caroline Soubiran, and my two colleagues, Gilles Celeux and Jean Diebolt. The above derivation from the massive Gradsteyn and Ryzhik (which I discovered thanks to Mary Ellen Bock when arriving in Purdue) is indeed incorrect as the final term should be the square root of 2β rather than 8β. However, this typo does not impact the normalising constant of the density, K(α,μ,τ), unless I am further confused.

## infinite mixtures are likely to take a while to simulate

Posted in Books, Statistics with tags Amsterdam, cross validated, infinite mixture, Luc Devroye, mixtures, Monte Carlo algorithm, series representation, simulation, University of Warwick on February 22, 2018 by xi'an**A**nother question on X validated got me highly interested for a while, as I had considered myself the problem in the past, until I realised while discussing with Murray Pollock in Warwick that there was no general answer: *when a density f is represented as an infinite series decomposition into weighted densities, some weights being negative, is there an efficient way to generate from such a density?* One natural approach to the question is to look at the mixture with positive weights, *f⁺*, since it gives an upper bound on the target density. Simulating from this upper bound *f⁺* and accepting the outcome x with probability equal to the negative part over the sum of the positive and negative parts *f⁻(x)*/*f(x)* is a valid solution. Except that it is not implementable if

- the positive and negative parts both involve infinite sums with no exploitable feature that can turn them into finite sums or closed form functions,
- the sum of the positive weights is infinite, which is the case when the series of the weights is not absolutely converging.

Even when the method is implementable it may be arbitrarily inefficient in the sense that the probability of acceptance is equal to to the inverse of the sum of the positive weights and that simulating from the bounding mixture in the regular way uses the original weights which may be unrelated in size with the actual importance of the corresponding components in the actual target. Hence, when expressed in this general form, the problem cannot allow for a generic solution.

Obviously, if more is known about the components of the mixture, as for instance the sequence of weights being alternated, there exist specialised methods, as detailed in the section of series representations in Devroye’s (1985) simulation bible. For instance, in the case when positive and negative weight densities can be paired, in the sense that their weighted difference is positive, a latent index variable can be included. But I cannot think of a generic method where the initial positive and negative components are used for simulation, as it may on the opposite be the case that no finite sum difference is everywhere positive.

## a Ca’Foscari [first Italian-French statistics seminar]

Posted in Kids, pictures, Statistics, Travel, University life with tags ABC, Approximate Bayesian computation, Ca' Foscari University, clustering, Dirichlet mixture priors, GRETA, Laplacian, mixtures, San Giobbe, tutorial, Università Italo-Francese, Université Franco-Italienne, Venezia, workshop on October 26, 2017 by xi'an**A**part from subjecting my [surprisingly large!] audience to three hours of ABC tutorial today, and after running Ponte della la Libertà to Mestre and back in a deep fog, I attended the second part of the 1st Italian-French statistics seminar at Ca’Foscari, Venetiarum Universitas, with talks by Stéfano Tonellato and Roberto Casarin. Stéfano discussed a most interesting if puzzling notion of clustering via Dirichlet process mixtures. Which indeed puzzles me for its dependence on the Dirichlet measure and on the potential for an unlimited number of clusters as the sample size increases. The method offers similarities with an approach from our 2000 JASA paper on running inference on mixtures without proper label switching, in that looking at pairs of allocated observations to clusters is revealing about the [true or pseudo-true] number of clusters. With divergence in using eigenvalues of Laplacians on similarity matrices. But because of the potential for the number of components to diverge I wonder at the robustness of the approach via non-parametric [Bayesian] modelling. Maybe my difficulty stands with the very notion of cluster, which I find poorly defined and mostly in the eyes of the beholder! And Roberto presented a recent work on SURE and VAR models, with a great graphical representation of the estimated connections between factors in a sparse graphical model.

## R typos

Posted in Books, Kids, R, Statistics, Travel, University life with tags Amsterdam, Bayesian Analysis, MCMskv, Metropolis-Hastings algorithm, mixtures, Monte Carlo Statistical Methods, R, random walk, testing as mixture estimation on January 27, 2016 by xi'an**A**t MCMskv, Alexander Ly (from Amsterdam) pointed out to me some R programming mistakes I made in the introduction to Metropolis-Hastings algorithms I wrote a few months ago for the Wiley on-line encyclopedia! While the outcome (Monte Carlo posterior) of the corrected version is moderately changed this is nonetheless embarrassing! The example (if not the R code) was a mixture of a Poisson and a Geometric distributions borrowed from our testing as mixture paper. Among other things, I used a flat prior on the mixture weights instead of a Beta(1/2,1/2) prior *and* a simple log-normal random walk on the mean parameter instead of a more elaborate second order expansion discussed in the text. And I also inverted the probabilities of success and failure for the Geometric density. The new version is now available on arXiv, and hopefully soon on the Wiley site, but one (the?) fact worth mentioning here is that the (right) corrections in the R code first led to overflows, because I was using the Beta random walk Be(εp,ε(1-p)) which major drawback I discussed here a few months ago. With the drag that nearly zero or one values of the weight parameter produced infinite values of the density… Adding 1 (or 1/2) to each parameter of the Beta proposal solved the problem. And led to a posterior on the weight still concentrating on the correct corner of the unit interval. In any case, a big thank you to Alexander for testing the R code and spotting out the several mistakes…

## mixture models with a prior on the number of components

Posted in Books, Statistics, University life with tags Bayesian asymptotics, Bayesian non-parametrics, Chinese restaurant process, consistency, Dirichlet mixture priors, Dirichlet process, mixtures, reversible jump on March 6, 2015 by xi'an

“From a Bayesian perspective, perhaps the most natural approach is to treat the numberof components like any other unknown parameter and put a prior on it.”

**A**nother mixture paper on arXiv! Indeed, Jeffrey Miller and Matthew Harrison recently arXived a paper on estimating the number of components in a mixture model, comparing the parametric with the non-parametric Dirichlet prior approaches. Since priors can be chosen towards agreement between those. This is an obviously interesting issue, as they are often opposed in modelling debates. The above graph shows a crystal clear agreement between finite component mixture modelling and Dirichlet process modelling. The same happens for classification. However, Dirichlet process priors do not return an estimate of the number of components, which may be considered a drawback if one considers this is an identifiable quantity in a mixture model… But the paper stresses that the number of estimated clusters under the Dirichlet process modelling tends to be larger than the number of components in the finite case. Hence that the Dirichlet process mixture modelling is not consistent in that respect, producing parasite extra clusters…

In the parametric modelling, the authors assume the same scale is used in all Dirichlet priors, that is, for all values of k, the number of components. Which means an incoherence when marginalising from k to (k-p) components. Mild incoherence, in fact, as the parameters of the different models do not have to share the same priors. And, as shown by Proposition 3.3 in the paper, this does not prevent coherence in the marginal distribution of the latent variables. The authors also draw a comparison between the distribution of the partition in the finite mixture case and the Chinese restaurant process associated with the partition in the infinite case. A further analogy is that the finite case allows for a stick breaking representation. A noteworthy difference between both modellings is about the size of the partitions

in the finite (homogeneous partitions) and infinite (extreme partitions) cases.

An interesting entry into the connections between “regular” mixture modelling and Dirichlet mixture models. Maybe not ultimately surprising given the past studies by Peter Green and Sylvia Richardson of both approaches (1997 in Series B and 2001 in JASA).

## amazing Gibbs sampler

Posted in Books, pictures, R, Statistics, University life with tags bayesm, convergence assessment, Gibbs sampler, Jean-Michel Marin, Markov chain Monte Carlo, mixtures, R on February 19, 2015 by xi'an**W**hen playing with Peter Rossi’s bayesm R package during a visit of Jean-Michel Marin to Paris, last week, we came up with the above Gibbs outcome. The setting is a Gaussian mixture model with three components in dimension 5 and the prior distributions are standard conjugate. In this case, with 500 observations and 5000 Gibbs iterations, the Markov chain (for one component of one mean of the mixture) has two highly distinct regimes: one that revolves around the true value of the parameter, 2.5, and one that explores a much broader area (which is associated with a much smaller value of the component weight). What we found amazing is the Gibbs ability to entertain both regimes, simultaneously.