Archive for Monte Carlo Statistical Methods

population quasi-Monte Carlo

Posted in Books, Statistics with tags , , , , , , , , , , , , on January 28, 2021 by xi'an

“Population Monte Carlo (PMC) is an important class of Monte Carlo methods, which utilizes a population of proposals to generate weighted samples that approximate the target distribution”

A return of the prodigal son!, with this arXival by Huang, Joseph, and Mak, of a paper on population Monte Carlo using quasi-random sequences. The construct is based on an earlier notion of Joseph and Mak, support points, which are defined wrt a given target distribution F as minimising the variability of a sample from F away from these points. (I would have used instead my late friend Bernhard Flury’s principal points!) The proposal uses Owen-style scrambled Sobol points, followed by a deterministic mixture weighting à la PMC, followed by importance support resampling to find the next location parameters of the proposal mixture (which is why I included an unrelated mixture surface as my post picture!). This importance support resampling is obviously less variable than the more traditional ways of resampling but the cost moves from O(M) to O(M²).

“The main computational complexity of the algorithm is O(M²) from computing the pairwise distance of the M weighted samples”

The covariance parameters are updated as in our 2008 paper. This new proposal is interesting and reasonable, with apparent significant gains, albeit I would have liked to see a clearer discussion of the actual computing costs of PQMC.

Rao-Blackwellisation in the MCMC era

Posted in Books, Statistics, University life with tags , , , , , , , , , , on January 6, 2021 by xi'an

A few months ago, as indicated on this blog, I was contacted by ISR editors to write a piece on Rao-Blackwellisation, towards a special issue celebrating Calyampudi Radhakrishna Rao’s 100th birthday. Gareth Roberts and I came up with this survey, now on arXiv, discussing different aspects of Monte Carlo and Markov Chain Monte Carlo that pertained to Rao-Blackwellisation, one way or another. As I discussed the topic with several friends over the Fall, it appeared that the difficulty was more in setting the boundaries. Than in finding connections. In a way anything conditioning or demarginalising or resorting to auxiliary variates is a form of Rao-Blackwellisation. When re-reading the JASA Gelfand and Smith 1990 paper where I first saw the link between the Rao-Blackwell theorem and simulation, I realised my memory of it had drifted from the original, since the authors proposed there an approximation of the marginal based on replicas rather than the original Markov chain. Being much closer to Tanner and Wong (1987) than I thought. It is only later that the true notion took shape. [Since the current version is still a draft, any comment or suggestion would be most welcomed!]

computing Bayes 2.0

Posted in Books, Statistics, University life with tags , , , , , , , , , , , on December 11, 2020 by xi'an

Our survey paper on “computing Bayes“, written with my friends Gael Martin [who led this project most efficiently!] and David Frazier, has now been revised and resubmitted, the new version being now available on arXiv. Recognising that the entire range of the literature cannot be encompassed within a single review, esp. wrt the theoretical advances made on MCMC, the revised version is more focussed on the approximative solutions (when considering MCMC as “exact”!). As put by one of the referees [which were all very supportive of the paper], “the authors are very brave. To cover in a review paper the computational methods for Bayesian inference is indeed a monumental task and in a way an hopeless one”. This is the opportunity to congratulate Gael on her election to the Academy of Social Sciences of Australia last month. (Along with her colleague from Monash, Rob Hyndman.)

MCqMC 2020 live and free and online

Posted in pictures, R, Statistics, Travel, University life with tags , , , , , , , , , , , , , on July 27, 2020 by xi'an

The MCqMC 20202 conference that was supposed to take place in Oxford next 9-14 August has been turned into an on-line free conference since travelling remains a challenge for most of us. Tutorials and plenaries will be live with questions  on Zoom, with live-streaming and recorded copies on YouTube. They will probably be during 14:00-17:00 UK time (GMT+1),  15:00-18:00 CET (GMT+2), and 9:00-12:00 ET. (Which will prove a wee bit of a challenge for West Coast and most of Asia and Australasia researchers, which is why our One World IMS-Bernoulli conference we asked plenary speakers to duplicate their talks.) All other talks will be pre-recorded by contributors and uploaded to a website, with an online Q&A discussion section for each. As a reminder here are the tutorials and plenaries:

Invited plenary speakers:

Aguêmon Yves Atchadé (Boston University)
Jing Dong (Columbia University)
Pierre L’Écuyer (Université de Montréal)
Mark Jerrum (Queen Mary University London)
Peter Kritzer (RICAM Linz)
Thomas Muller (NVIDIA)
David Pfau (Google DeepMind)
Claudia Schillings (University of Mannheim)
Mario Ullrich (JKU Linz)


Fred Hickernell (IIT) — Software for Quasi-Monte Carlo Methods
Aretha Teckentrup (Edinburgh) — Markov chain Monte Carlo methods

deterministic moves in Metropolis-Hastings

Posted in Books, Kids, R, Statistics with tags , , , , , , , , on July 10, 2020 by xi'an

A curio on X validated where an hybrid Metropolis-Hastings scheme involves a deterministic transform, once in a while. The idea is to flip the sample from one mode, ν, towards the other mode, μ, with a symmetry of the kind

μ-α(x+μ) and ν-α(x+ν)

with α a positive coefficient. Or the reciprocal,

-μ+(μ-x)/α and -ν+(ν-x)/α

for… reversibility reasons. In that case, the acceptance probability is simply the Jacobian of the transform to the proposal, just as in reversible jump MCMC.

Why the (annoying) Jacobian? As explained in the above slides (and other references), the Jacobian is there to account for the change of measure induced by the transform.

Returning to the curio, the originator of the question had spotted some discrepancy between the target and the MCMC sample, as the moments did not fit well enough. For a similar toy model, a balanced Normal mixture, and an artificial flip consisting of

x’=±1-x/2 or x’=±2-2x

implemented by


I could not spot said discrepancy beyond Monte Carlo variability.