## advancements in Bayesian methods and implementations

Posted in Books, Statistics, University life with tags , , , , , , , , on November 10, 2022 by xi'an

The handbook of (recent) advances in Bayesian methods is now out (at the Elsevierian price of \$250!) with chapters on Gibbs posteriors [Ryan Martin & Nicolas Syring], martingale distributions [Walker], selective inference [Daniel García Racines & Alastair Young], manifold simulations [Sumio Watanabe], MCMC for GLMMs [Vivek Roy] and multiple testing [Noirrit Chandra and Sourabh Bhattacharya]. (Along with my chapter on 50 shades of Bayesian testing.) Celebrating 102 years for C.R. Rao, one of the three editors of this volume (as well as the series) along with Arni Srivastava Rao and Alastair Young.

## bummer…

Posted in pictures, Travel, University life with tags , , , , , , on September 20, 2022 by xi'an

## another Latin rectangle

Posted in pictures, University life with tags , , , , , , , , , on June 17, 2021 by xi'an

## a Bayesian interpretation of FDRs?

Posted in Statistics with tags , , , , , , , , , , on April 12, 2018 by xi'an

This week, I happened to re-read John Storey’ 2003 “The positive discovery rate: a Bayesian interpretation and the q-value”, because I wanted to check a connection with our testing by mixture [still in limbo] paper. I however failed to find what I was looking for because I could not find any Bayesian flavour in the paper apart from an FRD expressed as a “posterior probability” of the null, in the sense that the setting was one of opposing two simple hypotheses. When there is an unknown parameter common to the multiple hypotheses being tested, a prior distribution on the parameter makes these multiple hypotheses connected. What makes the connection puzzling is the assumption that the observed statistics defining the significance region are independent (Theorem 1). And it seems to depend on the choice of the significance region, which should be induced by the Bayesian modelling, not the opposite. (This alternative explanation does not help either, maybe because it is on baseball… Or maybe because the sentence “If a player’s [posterior mean] is above .3, it’s more likely than not that their true average is as well” does not seem to appear naturally from a Bayesian formulation.) [Disclaimer: I am not hinting at anything wrong or objectionable in Storey’s paper, just being puzzled by the Bayesian tag!]

## straightforward statistics [book review]

Posted in Books, Kids, Statistics, University life with tags , , , , , , , on July 3, 2014 by xi'an

“I took two different statistics courses as an undergraduate psychology major [and] four different advanced statistics classes as a PhD student.” G. Geher

Straightforward Statistics: Understanding the Tools of Research by Glenn Geher and Sara Hall is an introductory textbook for psychology and other social science students. (That Oxford University Press sent me for review in CHANCE. Nice cover, by the way!) I can spot the purpose behind the title, purpose heavily stressed anew in the preface and the first chapter, but it nonetheless irks me as conveying the message that one semester of reasonable diligence in class will suffice to any college students to “not only understanding research findings from psychology, but also to uncovering new truths about the world and our place in it” (p.9). Nothing less. While, in essence, it covers the basics found in all introductory textbooks, from descriptive statistics to ANOVA models. The inclusion of “real research examples” in the chapters of the book rather demonstrates how far from real research a reader of the book would stand… Continue reading