Archive for Murray Aitkin

are profile likelihoods likelihoods?!

Posted in Books, Kids, Statistics, University life with tags , , , , , on March 27, 2018 by xi'an

A recent arXived paper by Oliver J. Maclaren is asking this very question. And argue for a positive answer. One of the invoked sources is Murray Aitkin’s integrated likelihood book, which I criticised here and elsewhere. With the idea of the paper being that

“….there is an appropriate notion of integration over variables that takes likelihood functions to likelihood functions via maximization.”

Hmm…. The switch there is to replace addition with maximisation, probability with possibility, and… profile likelihood as marginal possibility under this new concept. I just do not see how adapting these concepts for the interpretation of the profile likelihood makes the latter more meaningful, since it still overwhelmingly does not result from a distribution density at an observed realisation of a random variable. This reminds me a paper I refereed quite a long while ago where the authors were using Schwarz’ theory of distributions to expand the notion of unbiasedness. With unclear consequences.

Measuring statistical evidence using relative belief [book review]

Posted in Books, Statistics, University life with tags , , , , , , , , , , , , , , , , , , on July 22, 2015 by xi'an

“It is necessary to be vigilant to ensure that attempts to be mathematically general do not lead us to introduce absurdities into discussions of inference.” (p.8)

This new book by Michael Evans (Toronto) summarises his views on statistical evidence (expanded in a large number of papers), which are a quite unique mix of Bayesian  principles and less-Bayesian methodologies. I am quite glad I could receive a version of the book before it was published by CRC Press, thanks to Rob Carver (and Keith O’Rourke for warning me about it). [Warning: this is a rather long review and post, so readers may chose to opt out now!]

“The Bayes factor does not behave appropriately as a measure of belief, but it does behave appropriately as a measure of evidence.” (p.87)

Continue reading

full Bayesian significance test

Posted in Books, Statistics with tags , , , , , , , , , , on December 18, 2014 by xi'an

Among the many comments (thanks!) I received when posting our Testing via mixture estimation paper came the suggestion to relate this approach to the notion of full Bayesian significance test (FBST) developed by (Julio, not Hal) Stern and Pereira, from São Paulo, Brazil. I thus had a look at this alternative and read the Bayesian Analysis paper they published in 2008, as well as a paper recently published in Logic Journal of IGPL. (I could not find what the IGPL stands for.) The central notion in these papers is the e-value, which provides the posterior probability that the posterior density is larger than the largest posterior density over the null set. This definition bothers me, first because the null set has a measure equal to zero under an absolutely continuous prior (BA, p.82). Hence the posterior density is defined in an arbitrary manner over the null set and the maximum is itself arbitrary. (An issue that invalidates my 1993 version of the Lindley-Jeffreys paradox!) And second because it considers the posterior probability of an event that does not exist a priori, being conditional on the data. This sounds in fact quite similar to Statistical Inference, Murray Aitkin’s (2009) book using a posterior distribution of the likelihood function. With the same drawback of using the data twice. And the other issues discussed in our commentary of the book. (As a side-much-on-the-side remark, the authors incidentally  forgot me when citing our 1992 Annals of Statistics paper about decision theory on accuracy estimators..!)

posterior likelihood ratio is back

Posted in Statistics, University life with tags , , , , , , , , , on June 10, 2014 by xi'an

“The PLR turns out to be a natural Bayesian measure of evidence of the studied hypotheses.”

Isabelle Smith and André Ferrari just arXived a paper on the posterior distribution of the likelihood ratio. This is in line with Murray Aitkin’s notion of considering the likelihood ratio

f(x|\theta_0) / f(x|\theta)

as a prior quantity, when contemplating the null hypothesis that θ is equal to θ0. (Also advanced by Alan Birnbaum and Arthur Dempster.) A concept we criticised (rather strongly) in our Statistics and Risk Modelling paper with Andrew Gelman and Judith Rousseau.  The arguments found in the current paper in defence of the posterior likelihood ratio are quite similar to Aitkin’s:

  • defined for (some) improper priors;
  • invariant under observation or parameter transforms;
  • more informative than tthe posterior mean of the posterior likelihood ratio, not-so-incidentally equal to the Bayes factor;
  • avoiding using the posterior mean for an asymmetric posterior distribution;
  • achieving some degree of reconciliation between Bayesian and frequentist perspectives, e.g. by being equal to some p-values;
  • easily computed by MCMC means (if need be).

One generalisation found in the paper handles the case of composite versus composite hypotheses, of the form

\int\mathbb{I}\left( p(x|\theta_1)<p(x|\theta_0)\right)\pi(\text{d}\theta_1|x)\pi(\text{d}\theta_0|x)

which brings back an earlier criticism I raised (in Edinburgh, at ICMS, where as one-of-those-coincidences, I read this paper!), namely that using the product of the marginals rather than the joint posterior is no more a standard Bayesian practice than using the data in a prior quantity. And leads to multiple uses of the data. Hence, having already delivered my perspective on this approach in the past, I do not feel the urge to “raise the flag” once again about a paper that is otherwise well-documented and mathematically rich.

 

re-read paper

Posted in Books, Statistics, Travel, University life with tags , , , , , , , on September 3, 2013 by xi'an

Today, I attended the RSS Annual Conference in Newcastle-upon-Tyne. For one thing, I ran a Memorial session in memory of George Casella, with my (and his) friends Jim Hobert and Elias Moreno as speakers. (The session was well-attended if not overwhelmingly so.) For another thing, the RSS decided to have the DIC Read Paper by David Spiegelhalter, Nicky Best, Brad Carlin and Angelika van der Linde Bayesian measures of model complexity and fit re-Read, and I was asked to re-discuss the 2002 paper. Here are the slides of my discussion, borrowing from the 2006 Bayesian Analysis paper with Gilles Celeux, Florence Forbes, and Mike Titterington where we examined eight different versions of DIC for mixture models. (I refrained from using the title “snow white and the seven DICs” for a slide…) I also borrowed from our recent discussion of Murray Aitkin’s (2009) book. The other discussant was Elias Moreno, who focussed on consistency issues. (More on this and David Spiegelhalter’s defence in a few posts!) This was the first time I was giving a talk on a basketball court (I once gave an exam there!)

%d bloggers like this: